PHOENIX DRILLING LIMITED RIVERSIDE BALL POR Statement: Volume 2 – Technical Appendices West Riverside and Woodbank House

Appendix 11 – Geology and Ground Conditions

Appendix 11.1 - Figures

PHOENIX DRILLING LIMITED

RIVERSEPEIR BALL-RES Statement: Volume 2 – Technical Appendices

West Riverside and Woodbank House

Appendix 11.2 – Preliminary Ground Investigation Report

Riverside & Woodbank Estate, Balloch

Preliminary Phase 2 Ground Condition
Assessment

On behalf of: Flamingo Land Ltd

Project Ref: 35854 | Rev Final | September 2017

PHOEN A PRIMARY OF LAW TED TO TO TO THE OWN TO THE OWN THE OWN

RIVERSIDE, BALLOCH

Document Control Sheet

Project: Riverside & Woodbank Estate, Balloch

Project Ref: 35854 / 3002

Doc Ref: Final

Date: September 2017

	Name	Position	Signature	Date
Prepared by:	Gavin Scott	Principal Environmental Advisor	GS	21/06/2017
Prepared by:	Kate Riley	Principal Engineer	KR	16/06/2017
Approved and Reviewed by:	Dougie McDonald	Partner	DMcD	21/06/2017

For and on behalf of Peter Brett Associates LLP

Issue	Date	Description	Prepared	Reviewed	Approved
001	21/06/17	DRAFT Preliminary site investigation report. Final gas and groundwater data to be incorporated into later edition	GS	DMcD	DMcD
002 Preliminary site investigation report. Final gas and groundwater data incorporated		GS	DMcD	DMcD	

Peter Brett Associates LLP disclaims any responsibility to the Client and others in respect of any matters outside the scope of this report. This report has been prepared with reasonable skill, care and diligence within the terms of the Contract with the Client and generally in accordance with the appropriate ACE Agreement and taking account of the manpower, resources, investigations and testing devoted to it by agreement with the Client. This report is confidential to the Client and Peter Brett Associates LLP accepts no responsibility of whatsoever nature to third parties to whom this report or any part thereof is made known. Any such party relies upon the report at their own risk.

© Peter Brett Associates LLP 2017

Contents

Sun	nmary		1
1	Introdu	iction	3
	1.1	Preamble	3
	1.2	Scope of Work	
	1.3	Limitations	∠
2	The Sit	e	6
	2.1	Site Location	6
	2.2	Summary of Site History	6
	2.3	Current Site Use	6
	2.4	Proposed Development	7
3	Ground	d Conditions, Hydrogeology and Hydrology	8
	3.1	Geology	8
	3.2	Made Ground	9
	3.3	Alluvium	10
	3.4	Till (Diamicton)	10
	3.5	Glaciofluvial Deposits	11
	3.6	Groundwater	11
	3.7	Hydrogeology	11
	3.8	Hydrology	12
	3.9	Other Potential Geological Hazards / Constraints	12
4	Geotec	hnical Considerations and Ground Stability Assessment	13
	4.1	Introduction	13
	4.2	Site Preparation	13
	4.3	Excavations and Groundwater Control	13
	4.4	Slope Stability	13
	4.5	Pavements	14
	4.6	Below Ground Infrastructure	14
	4.7	Foundations	14
	4.8	Piled Foundations	15
	4.9	Floor Slabs	15
	4.10	Design of Buried Concrete	15
5	Assess	sment of Soil and Groundwater Contamination and Ground Gases	17
	5.1	Risk Assessment Strategy	17
	5.2	Preliminary Conceptual Site Model	17
	5.3	Potential Sources	17
	5.4	Potential Receptors	18
	5.5	Potential Pathways	19
	5.6	Scope and Objectives of Contamination Investigation	19
	5.7	Confirmed Soil Contamination – Woodbank	20
	5.8	Confirmed Soil Contamination – Riverside	20
	5.9	Assessment of Ground Gases	21
	5.10	Assessment of Groundwater	21

6	Summa	ary of Constraints and Recommendations	24
	6.1	Summary	24
	6.2	Geotechnical Conclusions	24
	6.3	Foundations	24
	6.4	Contamination / Ground Gas Conclusions	25
	6.5	Contamination / Ground Gas Recommendations	25
	6.6	Geotechnical / Foundation Recommendations	26
Ess	ential Gu	idance for Report Readers	27
Rofe	arancas		28

Figures

- 1 Site Investigation Locations with Indicators of Presence and Depth of Made Ground
- 2 Site Investigation Locations where Peat was Encountered
- Composite Plan of Shallow Ground Conditions Showing Approximate Distribution of Peat, Alluvium, Glaciofluvial Deposits and Till
- 4 Site Investigation Locations where Soil Contamination was Encountered and ground Gas Characteristic Situations (CS1 and CS2)

Tables

Table 4.1 Results of pH and Water Soluble Sulphate Analysis	.15
Table 5.1 Summary of Potential Sources of Contamination	
Table 5.2 Summary of Sensitivity of Potential Receptors	.18
Table 5.3 Potential Exposure Pathways	.19

Appendices

- A Borehole Logs
- B Geotechnical Test Results
- C Environmental Laboratory Results
- D Ground Gas Data (to be supplied in final version when available)
- E Groundwater Analysis Results

Summary

This report presents the findings of a Preliminary Phase 2 Ground Condition Assessment for the proposed development of the site at Riverside and Woodbank, Balloch.

Site Description

The Site, which measures approximately 18 hectares, is situated at the southern end of Loch Lomond. The Site can be split into two distinct areas, Riverside in the east and Woodbank in the west.

The larger eastern area (Riverside) is an irregular shape and is bounded to the north by the Lomond Shores centre and the bank of the Loch itself. To the east is the River Leven (the Maid of the Loch Slipway, including pontoons) and to the south is primarily housing. The majority of the Riverside area is occupied by woodland and walking paths. Two INEOS oil pipelines run through the site from west to east and two fenced valve compounds are present.

The smaller western area (Woodbank) is accessed via a track from Old Luss Road. The majority of the site area comprises two relatively flat lying open fields, however, in the west is an area dominated by woodland and the ruins of an old hotel and outbuildings. The western part of Woodbank features some steep slopes.

The Riverside Site has a varied history. There is no record of heavy industrial land uses within the Riverside site, however, multiple small quarries were active, particularly in the northern and western areas. The eastern area (beside the slipway) was dominated by railway infrastructure from Balloch Station in the south to Balloch Pier in the north. A dye works was located immediately offsite to the south, however, this area is currently occupied by housing.

The majority of the Woodbank site remained undeveloped from 1864 until present. The exception to this being the hotel and outbuildings present within the sloping woodland area in the west of the Woodbank site. On later mapping the hotel was labelled as Hamilton House. The hotel building was destroyed in a fire in 1995. The majority of the building was ruined, however, the façade remains standing. The various outbuildings are in a state of severe disrepair.

Ground Investigation

A preliminary ground investigation which comprised the drilling of shallow boreholes at 57 locations has been undertaken. Samples of soil were collected for geotechnical and environmental analysis and monitoring standpipes were installed for gas and groundwater analysis.

The objectives of the investigation were to record the shallow ground conditions including gas and groundwater. Where ground conditions are likely to present constraints to certain types of development, these will be described. The report will discuss where further investigations will be required in order to enable foundation design and remediation (if required).

Results of the Ground Investigation

Geotechnical Ground Conditions

Ground conditions across the undeveloped areas of the site comprised natural drift deposits with alluvium (soft, sandy, clayey peat) primarily to the east of Pier Road, glaciofluvial deposits (sands and gravels with silt and clay) and till (gravelly sandy clay). Made ground of >1.0m thickness was almost entirely restricted to the eastern part of the site where former railway lines ran. Made ground varied from cohesive to granular with common inclusions such as ash, glass, pottery and brick. Soft ground conditions associated with Peat / Alluvium were also typically restricted to the eastern part of the site.

Issue No.01

PHOEN A DRIMAN GILL Dround Condition Assessment

RIVERSIDE, BALLOCH

Due to the depth of poor ground (Made Ground, Alluvium and Peat), the area to the east of Pier Road will not be suitable for traditional pad or strip foundations and will therefore require some form of ground treatment such as localised excavation and replacement, the use of vibro columns or piled foundations. The exceptions to this would be very lightly loaded (i.e. timber or timber and canvas) structures which would cause very little compression of the ground and are relatively tolerant of a degree of settlement in the event of ground movement.

Any proposed road construction will need to take cognisance of the peat deposits and may require either the excavation of peat or the use of a piled load transfer blanket.

Across the majority of the site, where Till deposits and Glaciofluvial deposits are present, it may be possible to adopt shallow spread foundations for relatively lightly loaded structures where the underlying material is proved to be at least medium dense or medium strength.

However, depending on the nature of the specific structures, consideration may need to be given to ground improvement such as vibro concrete columns, and for heavier and/or more sensitive structures, or where the strata is low strength or relative density is very loose or loose, then a piled foundation solution is likely to be required. This is likely to apply to structures such as the swimming pool complex and hotels.

Contamination

A detailed risk assessment of contamination in soils cannot be carried out until the nature of the proposed uses have been confirmed. However, for this preliminary assessment, contaminants have been highlighted as 'elevated' if they exceeded guideline values for soils in residential gardens.

Soils containing elevated contaminants were primarily restricted to the area to the east of Pier Road and to the North of Ben Lomond Way. The primary contaminant of concern was lead, however, elevated arsenic and hexavalent chromium were also encountered. More detailed assessment of the potential risks posed by contaminants will be undertaken when the development plan has been refined. However, it is likely that some remedial measures will be required in the eastern area. These may be limited to the delineation and removal of 'hotspots' and / the placement of capping material above the contaminated soils to generate a barrier and thus limiting exposure.

Gas

The dataset indicates that the area east of Pier Road and north of Ben Lomond Way will be classified as CS2 as a result of concentrations of carbon dioxide and methane in exceedance of trigger values. The design of buildings in these areas may require the inclusion of gas protection measures. The results for the remainder of the site indicate that it would be classified as CS1 and no gas protection measures will be required.

Groundwater

The results of the analysis of groundwater samples have confirmed the presence of slightly elevated concentrations of heavy metals in some of the boreholes. The concentrations encountered are considered unlikely to have significant negative impact on the sensitive receptors (Loch Lomond and River Leven), however, a further round of borehole sampling and the collection of surface water samples with testing is recommended to strengthen this conclusion.

The summary contains an overview of the key findings and conclusions. However, no reliance should be placed on any part of the summary until the whole of the report has been read.

1 Introduction

1.1 Preamble

- 1.1.1 Peter Brett Associates LLP (PBA) has been commissioned by Flamingo Land (the Client) to prepare a Preliminary Phase 2 Ground Condition Assessment for the proposed tourist park development at Riverside and Woodbank, Balloch.
- 1.1.2 Previous investigations have been undertaken at the site, and PBA has reviewed complete or partial copies of the following salient reports:
 - Engineering Review, West Riverside, Balloch, Aecom, 2015;
 - West Riverside, Loch Lomond Shores, Phase 1 Geo-Environmental Desk Study, Aecom 2015;
 - Lomond Shores, Stage 2 Site Investigation Report, URS Report Fer 44762681/GLRP0533 Issue 2.
- 1.1.3 It should be noted that none of the above listed reports included the Woodbank site, however, Woodbank was visible on historical mapping included within the Phase 1 Report.
- 1.1.4 Whilst PBA has taken cognisance of the contents of the reports listed above, the content of previous work will not be repeated here.
- 1.1.5 The reports listed above concern investigations undertaken when the site was being promoted for a different end use and with a different site boundary. Furthermore, since the previous investigations and assessments were carried out, there have been considerable developments in relevant guidance and best practice of assessing ground conditions, together with revisions to the assessment methodology and criteria for assessing the risks from land contamination and hazardous ground gases.
- 1.1.6 The objective of this study is to present an assessment of ground conditions based on a review of previous assessments and the results of a preliminary intrusive site investigation carried out in February 2017.
- 1.1.7 This study has been undertaken to assess the ground conditions at the Site, and thereby to identify potential geoenvironmental and geotechnical hazards and constraints with respect to the proposed end use.
- 1.1.8 At the time of writing this report, the proposed layout of the site (Masterplan) has yet to be finalised. It is anticipated that the findings of this investigation will be used to inform the next phase of master planning.
- 1.1.9 The development will include some very distinct structures and building types ranging from the demanding (such as an indoor leisure complex with a swimming pool and an outdoor monorail) to the simple (such as woodland paths, glamping accommodation and lodges). Clearly the different structures proposed will have very different foundation requirements. The various different land uses will also require different environmental risk assessments (more detailed description in **Section 2**, below).
- 1.1.10 Once a revised masterplan has been drawn up, additional phases of investigations will be required to establish ground conditions in more detail around the areas where the requirement is more complex (i.e. at large / heavily loaded buildings or monorail column footings). Likewise, additional intrusive investigation may be required at any areas where potentially significant contamination is encountered.

1.1.11 The assessment has been carried out in general accordance with "established procedures" using current UK best practice and guidance as given in British Standard 10175 (BS 10175, 2013), Contaminated Land Report 11 (EA, 2004) and NHBC Standards Chapter 4.1 (NHBC, 2016a) with regard to land contamination, and DCLG (2014) with regard to land stability.

1.2 Scope of Work

- 1.2.1 In summary the scope of work undertaken for this study comprised:
 - A review of the previous investigations and assessments, together with readily available geological, hydrogeological and aquifer vulnerability maps, and historical Ordnance Survey maps.
 - A preliminary intrusive investigation, designed to achieve site wide coverage. The investigation comprised:
 - Fifty-Seven (57) shallow boreholes were advanced across the site at the locations shown on Figure 1 (N.B. the actual total number of boreholes advanced was 73, as the presence of obstructions in the shallow soils meant that A, B and C were required at certain locations),
 - o Boreholes were logged and in situ testing, primarily in the form of SPTs was undertaken at all locations.
 - Samples were recovered from all boreholes for geotechnical and environmental analysis,
 - Environmental monitoring standpipes were installed in 36 no of the boreholes to enable gas and groundwater monitoring,
 - Ground gas concentrations and flow rates were measured in the boreholes on 6 occasions over at least 12 weeks.
 - o Samples of groundwater were recovered from boreholes and sent to an accredited laboratory for environmental analysis.
 - A preliminary assessment of geological hazards and ground stability risks was undertaken to identify potential risks arising from loose or weak soils, cavities and other potentially adverse foundation conditions constraints.
 - A preliminary quantitative contamination risk assessment has been carried out utilising a
 Conceptual Site Model to identify 'source-pathway-receptor' linkages and data obtained
 from the site investigation to assess the potential risks and hazards, if any, associated
 with existing contamination in the ground.
- 1.2.2 Following the preliminary assessment, this report will recommend areas of the site where additional investigation would be beneficial.
- 1.2.3 It is anticipated that aspects of the masterplan will be revised or confirmed, partially based on the outcomes of the present study. Detailed foundation assessments will then be undertaken at the locations of the proposed structures that require them. I.e. the more detailed investigations and revisions of layout / design will be undertaken as concurrent, iterative processes.

1.3 Limitations

- 1.3.1 Unless stated otherwise, information from the previous ground investigation and assessment has not been included in this report and, where referenced, the report presenting this information should be read in conjunction with this report. PBA has not been involved in the supervision and technical direction of the previous investigations undertaken at the Site and accepts no responsible for the accuracy and completeness of the data.
- 1.3.2 Guidance on the context of this report and any general limitations or constraints on its content and usage are given in a separate guidance note included after the text of this report.

Riverside & Woodbank Estate, Balloch

PHOEN X DRII LING I LAW TED round Condition Assessment

RIVERSIDE, BALLOCH

1.3.3 Additional investigations including flood risk, ecology and archaeology are being undertaken at the site and will not be covered in detail in this report.

2 The Site

2.1 Site Location

- 2.1.1 The Site is located at the northern extent of the town of Balloch, at the southern end of Loch Lomond approximately centred at Ordnance Survey Grid Reference 238666, 682128. The boundary of the Site is shown on a Plan presented as **Figure 1**.
- 2.1.2 The Site which measures approximately 18 hectares can be split into two distinct areas, Riverside in the east and Woodbank in the west.
- 2.1.3 The larger eastern area (Riverside) is an irregular shape and is bounded to the north by the Lomond Shores centre and the bank of the Loch itself. To the east is the River Leven (the Maid of the Loch Slipway, including pontoons) and to the south is primarily housing. The majority of the Riverside area is occupied by woodland and walking paths. Two INEOS oil pipelines run through the site from west to east and two fenced valve compounds are present.
- 2.1.4 The smaller western area (Woodbank) is accessed via a track from Old Luss Road. The majority of the site area comprises two relatively flat lying open fields, however, in the west is an area dominated by woodland and the ruins of an old hotel and outbuildings.
- 2.1.5 The Site in general is relatively flat lying. However, in the eastern area, ground levels fall away towards the River Leven. The Ineos oil pipelines run from west to east through the northern part of the site and for the most part are situated within a cutting. Woodland areas are hummocky, with level variations in the region of 2 3m. Other mounds and hollows at the site may be related to the superficial quarrying of sands and gravels. The western part of the Woodbank site includes some steeply sloping ground which is thought to be a natural feature, possibly due to the effects of glacial movement. The above features (with the exception of the Woodbank site) are shown on a topographical survey undertaken in 2017.

2.2 Summary of Site History

- 2.2.1 This summary is based on information from historical Ordnance Survey (OS) maps which were included within the 2015 Aecom Phase 1 report. An appraisal of the Site history was included within that report. A brief summary of the salient features is presented here.
- 2.2.2 The Riverside Site has a varied history. There is no record of heavy industrial land uses within the Riverside site, however, multiple small quarries were active, particularly in the northern and western areas. The eastern area (beside the slipway) was dominated by railway infrastructure from Balloch Station in the south to Balloch Pier in the north. A dye works was located immediately offsite to the south, however, this area is currently occupied by housing.
- 2.2.3 The majority of the Woodbank site remained undeveloped from 1864 until present. The exception to this being the hotel and outbuildings present within the sloping woodland area in the west of the Woodbank site. On later mapping the hotel was labelled as Hamilton House. The hotel building was destroyed in a fire in 1995. The majority of the building was ruined, however, the façade remains standing. The various outbuildings are in a state of severe disrepair.

2.3 Current Site Use

- 2.3.1 The eastern part of the Woodbank area is occupied by two relatively flat lying fields which have been used for grazing. The western part of the Woodbank area is more heavily vegetated with woodland and rhododendrons. The western area includes the various ruined buildings formerly
- 2.3.2 associated with the hotel. In the north west, is a small hill, possibly a drumlin (a hill moulded by glacial action).

PHOEN TANKING IN PILE Pround Condition Assessment

RIVERSIDE. BALLOCH

- 2.3.3 The majority of the Riverside site is covered by woodland with paths, however, more open areas are also present throughout the site.
- 2.3.4 There is evidence of re-profiling throughout the Riverside site area. This is likely to have been associated with the small quarries in the area, the Lomond Shores development and the Ineos pipelines. Cuttings and embankments representing variations of between 2 and 5 metres in height are present and recorded on the topographical survey issued on 31/05/17 by L&M Survey Services for PBA.
- 2.3.5 Two fenced off compounds are present in the north of the site, along the route of the Ineos pipeline. These are assumed to be valve works.
- 2.3.6 The Aecom report from 2015 noted the presence of two stands of Japanese Knotweed within the Riverside site area. The Woodbank area was not included in that investigation. The presence of invasive / notifiable species will be covered during ecological survey works and are outside of the scope of this investigation.
- 2.3.7 The layout of the Site is shown on the plans included as **Figures 1 4**.

2.4 Proposed Development

- 2.4.1 A Masterplan for the proposed development is being developed. In general, the project relates to the erection and operation of a tourism and leisure led mixed use development with associated infrastructure on the two linked sites (Woodbank and Riverside) to the north west of Balloch.
- 2.4.2 The development will likely include new accommodation buildings, pods and glamping facilities, woodland paths, picnic areas, a central 'hub' including swimming pool, sports facilities and other attractions.
- 2.4.3 Development of the Woodbank House area will include proposals for the redevelopment of the remains of Woodbank House, (a listed building) and attendant structures, together with additional holiday lodge-style accommodation in the grounds.
- 2.4.4 Access to the proposed development will be from the existing road network including the A82, the A811 Stirling Road, the Old Luss Road, Ben Lomond Way, Pier Road and Balloch Road.
- 2.4.5 A Masterplan is currently being prepared with the layout evolving through an assessment of the site constraints (including the conclusions of this report). Early drafts of the Masterplan are still considered to provide a useful context for the findings of the present report as the draft shows the site split into zones and is indicative of the types of structures and density of development that is proposed.
- 2.4.6 Depending on the proposed structures, the foundation requirements will vary from robust and potentially complex (e.g. the swimming pool, elevated monorail footings) to very simple and undemanding (e.g. lodges and glamping pods, forest paths).
- 2.4.7 The assessments presented in **Sections 3, 4** and **5** of this report relate to the geotechnical properties (and implications for foundation design) for the various superficial geological.
- 2.4.8 Conditions encountered across the site as well as soil environmental and ground gassing assessments.
- 2.4.9 In order to make the assessments more useful to the masterplan revision phase, these constraints / ground conditions have been summarised on **Figures 1 4**.

3 Ground Conditions, Hydrogeology and Hydrology

3.1 Geology

Published Superficial Geology

- 3.1.1 The 1:50 000 scale geological map of the area, Sheet 30W and part of 29E (Scotland) Drift "Greenock" (British Geological Survey, 1989) indicates the presence of some superficial deposits overlying the solid geology within the Site boundary. The superficial deposits comprise three main types:
 - Raised Marine Deposits Clay, silt, sand and gravel. Formed in shallow seas with mainly siliciclastic sediments. This is indicated to be present adjacent to and following the southern shoreline of the loch.
 - Glaciofluvial Sand and Gravel gravel, sand and silt formed in cold periods with Ice Age
 glaciers scouring the landscape and depositing moraines of till with outwash sand and
 gravel deposits. These deposits are indicated to be present across the greater part of the
 Woodbank and Riverside sites.
 - Till (Diamicton) these deposits were formed in cold periods with Ice Age glaciers scouring the landscape and depositing moraines of till with outwash sand and gravel deposits. These deposits are indicated to be potentially present along the western part of the Woodbank site.
- 3.1.2 In addition, the British Geological Survey (BGS) mapping also shows areas of man-made deposits (Made Ground) being present and these are annotated by the BGS as being "deposited on original ground surface". These occur in two locations, being; in a narrow strip along the banks of the River Leven (Slipway) to the east of Pier Road (along the alignment of the former railway line); and in an area of ground to the North of Balloch Road and extending beneath Clairnish.
- 3.1.3 Furthermore, infilled ground (annotated as being Man-made deposits filling former opencast excavation) is marked as a parcel of land to the east of Old Luss Road and northwest of Ben Lomond Way, however this is believed to be outside of the Site boundary.
- 3.1.4 The Geology of Britain viewer on the BGS website indicates that there are also deposits of Alluvium present at the Site, described as clay, silt, sand and gravel, and shown as a ribbon extending from the shore of Loch Lomond, adjacent to the River Leven and along the alignment of the former railway line, predominantly to the east of Piers Road. These deposits may be present beneath any made ground.

Published Solid Geology

3.1.5 The 1:50 000 scale geological map of the area, Sheet 30W and part of 29E (Scotland) - Solid "Greenock" (BGS, 1990) indicates that the site is entirely underlain by the Teith Sandstone Formation of the Devonian Period.

Information on Solid Geology from the BGS and Previous Investigations

3.1.6 There are a number of BGS Borehole records available within the boundary of the Riverside site, and the deepest of these undertaken in 1998 for Balloch Footbridge (adjacent to the northern boundary of the Site) indicates that depth to bedrock is in excess of 35m at that location.

- 3.1.7 The Phase 1 Geo-Environmental Assessment (Aecom, May 2015) summarises the ground conditions indicated by previous ground investigations carried out at the Riverside site and identifies the presence of Made Ground and 'Organic Soils' overlying 'Fluvio/Upper Glacial Deposits', 'Glacial Till' with Bedrock (sandstone) encountered at depths of between 51m below ground level (m bgl) and 69m bgl. It is considered that the descriptor 'Organic Soils' could represent Alluvium.
- 3.1.8 There are no BGS borehole records from within the Woodbank site area. The closest BGS records relate to a string of shallow (generally <5m) boreholes drilled along the A82, to the west of the Woodbank site boundary. The boreholes typically reached depths of around 4.0mbgl and described 'Soft, friable or dense clayey SAND with cobbles' to around 1.5mbgl followed by 'Hard or Stiff sandy clay with boulders'
- 3.1.9 Two of the boreholes to the north / west of Woodbank (close to Stoneymollan Road / Roundabout) encountered sandstone bedrock at 5m 6.5mbgl.
- 3.1.10 The historical boreholes indicate that the depth to bedrock may be highly variable within the area of the Riverside / Woodbank sites. Sandstone was encountered at a depth of 52.65m at Balloch Station (southern end of Riverside), whilst in close proximity to the roundabout at the southern tip of Woodbank site sandstone was recorded at 5.0m.

2017 Ground Investigation

- 3.1.11 The ground conditions on the Site were investigated by Phoenix Drilling Ltd in January 2017 to provide information for the proposed sale of the Site.
- 3.1.12 Phoenix Drilling were instructed to complete 57 window sample boreholes to depths of up to 5m below ground level (mbgl). However, as a result of frequent obstructions which prevented drilling progress, several attempts were made at achieving depth at many of the boreholes. The additional boreholes were given the suffixes A, B, C etc. As a result, the total number of boreholes attempted was 73. Borehole locations are shown on **Figure 1**. The borehole logs are presented in **Appendix A**.
- 3.1.13 Geotechnical testing comprised the following:
 - Standard Penetration Test (SPTs) testing undertaken in situ during the drilling of the boreholes and used to give an understanding of the bearing pressure of the strata.
 - Particle Size Distributions (PSD) laboratory test to determine the make-up of soils in terms of relative proportions of particle size which determines the classification (i.e. silt, clay, sand, gravel).
 - Moisture Content laboratory test, the results of which influence the understanding of soil mechanics, bearing capacity and settlement.
 - Plasticity laboratory test carried out on clays.
 - pH and sulphate content the results of these laboratory tests are used to determine
 whether ground conditions will be aggressive to concrete and produce recommendations
 for the concrete mix required.
- 3.1.14 The following section summarises the ground conditions encountered in the boreholes which are also summarised on **Figures 1 4**.

3.2 Made Ground

3.2.1 Made Ground was encountered in forty-six out of seventy-three window sample boreholes, either from the ground surface or below a relatively thin layer of topsoil, to depths of between 0.15m bgl

and 3.5m bgl. With the exception of WS07 on the Woodbank Site, Made Ground thicknesses in excess of 1m were encountered predominantly to the east of Pier Road (as shown on **Figures 2**, **3 and 4**), where a former railway line used to cross the site on embankment (as shown on the historical maps presented in the 2015 Phase 1 report).

- 3.2.2 The borehole descriptions of the Made Ground indicate that it varies in composition from being a predominantly cohesive deposit comprising very soft gravelly sandy clay, to more typically a granular deposit, being a very loose to loose sand and gravel or organic silty gravelly sand. Each deposit contains varying quantities of cobbles, ash, glass fragments, pottery and brick fragments.
- 3.2.3 Uncorrected Standard Penetration Test (SPT) N values were recorded in a range of between 0 and 9, indicating that the granular Made Ground has a relative density of very loose and loose. Using an f1 factor (empirical correlation) of 4.5 (Stroud, 1989) would suggest an undrained shear strength for the cohesive Made Ground of between <5kPa and 40kPa. The SPT test results are included on the borehole logs included in **Appendix A**.
- 3.2.4 The laboratory testing indicates a variable moisture content range for the Made Ground of between 20% and 40%., with the higher moisture contents recorded within material described as Ash Fill.
- 3.2.5 A programme of geochemical laboratory testing was carried out on selected soil and groundwater samples to determine the concentrations of a range of commonly occurring potential contaminants as part of the investigation. In addition, monitoring wells installed in selected boreholes were monitored on a single occasion to provide a preliminary determination of concentrations of potentially hazardous ground gases. The results of the chemical analysis and gas monitoring are discussed in Section 5.
- 3.2.6 The results of the geotechnical laboratory analysis are included in **Appendix B**.

3.3 Alluvium

- 3.3.1 Material considered to represent Alluvium was encountered in fourteen of the seventy-three window sample boreholes, at depths between 0.2m bgl and 5.0m bgl. The Alluvium was only encountered in the eastern part of the Site, between Pier Road and the River Leven.
- 3.3.2 The Alluvium was typically described as very soft and soft peaty sandy Clay, but it is noted that beds (full thickness not proven but up to at least 2.85m) of very soft and soft sandy clayey Peat were encountered, as shown on **Figures 2 and 3** within the middle part of the site area east of Pier Road. The Alluvium is also occasionally encountered as a very loose and loose silty Sand.
- 3.3.3 An additional window sample borehole containing 2.5m thickness of peaty Sand overlying sandy Peat was encountered at WS16 located off site between Riverside and Woodbank.
- 3.3.4 Uncorrected SPT N values were recorded in a range of between 0 and 17. Using an f1 factor (empirical correlation) of 4.5 (Stroud, 1989) would suggest an undrained shear strength for the cohesive Alluvium of between <5kPa and 75kPa. The SPT N values indicate that the granular Alluvium has a typical relative density of very loose to loose.
- 3.3.5 The laboratory testing indicates moisture contents between 13% and 256% with measured values of liquid limit between 28% and 133% and plastic limit between 15% and 56%. Corresponding values of plasticity index range between 12% and 77% indicating the Alluvium to be variably of low to extremely high plasticity. The moisture contents above 100% and the extremely high plasticity relate to Peat samples encountered within the deposit.

3.4 Till (Diamicton)

3.4.1 Material considered to represent Till was encountered in five of the seventy-three window sample boreholes, all located in the western part of the Woodbank Site (see **Figure 3**). The Till was encountered at depths of between 0.1m bgl and 1.7m bgl, and was typically described as a firm

to stiff gravelly sandy Clay. The gravel was recorded as being flat to elongated subangular to rounded igneous rock and other lithologies. Some high value SPTs were recorded in the deposit which are considered to represent larger gravel /boulder elements present.

- 3.4.2 Uncorrected SPT N values recorded within the clay horizons were recorded in a range of between 26 and 47, which using an f1 factor (empirical correlation) of 4.5 (Stroud, 1989) would suggest an undrained shear strength for the Till of between about 100kPa and 200kPa. Measured values of undrained shear strength of clay samples within the Till, as determined by laboratory triaxial testing of two 71.49mm and 82.53mm diameter specimens are 57kPa and 113kPa indicating firm to stiff consistency. It is considered that these lower values may not be wholly representative of insitu conditions as they may have been subject to sample disturbance.
- 3.4.3 The laboratory testing indicates moisture contents between 11% and 26%, with measured values of liquid limit between 27% and 34% and plastic limit between 15% and 18%. Corresponding values of plasticity index range between 12% and 16% indicating the Till to be of low plasticity.

3.5 Glaciofluvial Deposits

- 3.5.1 Material considered to represent Glaciofluvial deposits was encountered in fifty-one out of seventy-three window sample boreholes, at depths from existing ground surface to 4.8m bgl. These deposits were typically encountered in the western part of the Riverside site and the eastern part of the Woodbank site (as shown on **Figure 3**). These deposits were typically described as medium dense Sand and Gravel, silty gravelly Sand and silty Sand, but also occasionally as gravelly sandy Clay. The gravel inclusions are described generally as elongated, sub angular to sub rounded, fine to coarse of quartz, sandstone, igneous rock and other lithologies.
- 3.5.2 Uncorrected SPT N values in the granular parts of this strata indicate a range between 0 and >50 indicating that the material has a highly variable relative density of between very loose to very dense, and it is considered that the higher values recorded may represent larger gravel/ boulder elements present within this deposit.
- 3.5.3 The laboratory testing indicates moisture contents for the glaciofluvial deposits of between 6% and 31%, with greater moisture contents encountered in the more cohesive parts of this deposit.

3.6 Groundwater

3.6.1 The 2015 Phase 1 report indicated that earlier ground investigations at the site identified groundwater strikes in the 'majority of exploratory locations' and that 'groundwater at the site was in general hydraulic continuity with the River Leven at the level between 7.54m Above Ordnance Datum (AOD) and 8.89mAOD.

During this phase of investigation, groundwater was only encountered during drilling in fourteen of the seventy-three window sample boreholes, at variable depths of between 0.8mbgl and 3.7mbgl, predominantly located in the Made Ground, Alluvium and glaciofluvial deposits in the east of the Site. It is noted that the surface datum level of each of the boreholes was not recorded and as such the relative level of groundwater during this phase of investigation cannot be determined. In subsequent monitoring visits, around 13 of the 36 installed boreholes remained dry.

3.6.2 The groundwater encountered is considered to be perched water, existing in pockets of more permeable strata (such as sands and gravels), restricted by lower permeability deposits (such as clays), rather than a continuous shallow groundwater body.

3.7 Hydrogeology

3.7.1 The Phase 1 Report (Aecom 2015) states that groundwater in superficial deposits beneath the site is likely to be of moderate to high potential productivity.

- 3.7.2 The Phase 1 Report states that the Lower Devonian (Strathmore) bedrock aquifer is of High Productivity and has an overall classification of 'Good'.
- 3.7.3 The Phase 1 Report states that there are no known abstraction boreholes within 1km of the site.

3.8 Hydrology

- 3.8.1 The nearest surface water features to the site are Loch Lomond which is situated immediately to the north and the River Leven which is situated immediately to the east and enters the Loch adjacent to the north eastern point of the site.
- 3.8.2 The Phase 1 Report states that the River Leven has a SEPA status of Poor for ecology and Pass for chemistry. The pressures on the river resulting in these classifications include morphological modifications (water collection, dams, weird etc) and point source pollutants.
- 3.8.3 Likewise, the Phase 1 Report states that Loch Lomond has a SEPA status of Poor for ecology and Pass for chemistry. The status is a result of both diffuse and point sources of pollution, morphological alterations and recreational activities.
- 3.8.4 Information on discharge consents is summarised in the Phase 1 Report which includes a Landmark Envirocheck report.
- 3.8.5 A flood risk assessment is currently being undertaken.

3.9 Other Potential Geological Hazards / Constraints

- 3.9.1 **Radon** is a naturally occurring radioactive gas and emanates from geological formations to varying degrees, depending on the type, porosity and permeability. An assessment of potential for radon gas to be present is given in the Aecom Phase 1 report (2015) and indicates that the site is in the lowest category for potential radon risk. As such, no further assessment of radon or radon specific remedial measures will be required.
- 3.9.2 **Mining** based on the conclusions of the 2015 Phase 1 report and the Coal Authority website, the site is not considered to be in an area where coal mining has occurred.

4 Geotechnical Considerations and Ground Stability Assessment

4.1 Introduction

- 4.1.1 This section of the report presents comments on the ground conditions in relation to a conceptual Masterplan.
- 4.1.2 For the proposed development, the principal geotechnical considerations will be the strength and compressibility of the founding soils and hence, the foundation requirements for the proposed structures.
- 4.1.3 As the layout and design details of the proposed structures have yet to be finalised, this report will discuss the geotechnical properties at the site in general terms.

4.2 Site Preparation

4.2.1 It is assumed that the proposed development will largely be constructed at grade on the existing ground profile. It is anticipated however that local regrading of the existing ground levels and excavation of trenches and ditches will be required associated with the construction of the site infrastructure.

4.3 Excavations and Groundwater Control

- 4.3.1 Construction activities such as trenches for drainage and utilities, will require excavations. Due to the potential shallow depth below ground of the water table in the area (within 1.0m below ground level in places) excavations may encounter groundwater during development works. The expected permeability of the near surface soils on the Site is expected to vary depending on the presence of cohesive or granular materials. Allowance should therefore be made for controlling inflows of any groundwater. Should groundwater be encountered it will be required to be pumped out until the excavation is backfilled. Deep excavations that are required to be open for any length of time will need to consider the potential for groundwater entry and use appropriate techniques to ensure the excavations remain dry and stable for the required duration.
- 4.3.2 For any structures that are proposed to be below ground and the associated groundwater table, consideration will need to be given to appropriate design and construction measures to prevent and/or control groundwater ingress.
- 4.3.3 The predominantly granular nature of the ground conditions at the site mean that it is unlikely that trenches and areas of open cut will remain open unsupported for even short durations, and this is especially the case below the groundwater table. Where excavations are above the groundwater table, the sides may need to be battered back to a safe slope angle or restrained by full face support such as shoring or trench sheeting. Where excavations are below the groundwater table the sides will require full face support such as shoring or trench sheeting.

4.4 Slope Stability

4.4.1 The proposed development may require the reuse of near surface soils as an engineered fill, if site levels are required to be amended, and this may result in the development of both cut and filled slopes. Any slopes proposed for the development will need to be adequately designed based on the nature of the material likely to be present, to ensure the slopes remain stable during the term required (i.e. temporary or permanent). It is likely that slopes formed from the predominantly granular material present at the site will be at risk of surface erosion and local shallow surface failures of the side slopes and therefore it is likely that measures will be required to protect the surface of the slopes in the short, medium and long term.

4.5 Pavements

- 4.5.1 Pavements carried on a suitable depth of capping/sub-base should prove adequate provided the exposed deposits are compacted by a heavy smooth wheeled roller and any soft/loose or degradable materials removed and replaced with compacted granular fill. Similarly, any remains of walls, foundations or exposed pieces of demolition materials present within the made ground would need to be removed to prevent any development or concentrations of stress in the pavement.
- 4.5.2 Road construction on areas where Peat has been identified can however suffer from significant settlement and any roads proposed that cross areas underlain by Peat may need to consider either excavation of the Peat and replacement with engineered fill or the formation of a piled load transfer blanket with the road construction layers formed on top of the load transfer blanket.
- 4.5.3 Strengthening of peat may be carried out in discrete columns or by mass strengthening of a larger zone. Typically, the strengthening with discrete columns achieves more controlled mixing and containment of materials whilst mass strengthening may enable a greater production rate to be achieved. The strengthened peat should be surcharged immediately after mixing for a period of time to allow it to consolidate and improve the strength gain. Additional ground investigation, compaction testing with the addition of different binders and field trials would need to be carried out in order to verify if this option is viable for the Site.
- 4.5.4 Peat does not provide adequate lateral confinement for the use of vibro-stone columns to improve soil bearing properties, however it is possible that vibro-concrete columns (VCCs) could be used subject to confirmation of this by specialist contractors.

4.6 Below Ground Infrastructure

4.6.1 Where peat is present consideration will need to be given to all buried services that are sensitive to settlement and movement such as surface water drains or foul sewers. Typically, services sensitive to settlement will be placed in corridors where the Peat is excavated and replaced by engineered fill. Alternatively, consideration can be given to support of services on piled foundations. Ground improvement using soil mixing or VCCs could be considered.

4.7 Foundations

- 4.7.1 For the proposed development, the principal consideration will be the strength and compressibility of the founding soils, and hence, the foundation requirements for the proposed structures. The appropriate foundation solution will depend not only on ground conditions, but also on the building geometry, structural loading, load distribution and the limiting criteria for movement or settlement of the various structures.
- 4.7.2 It is unlikely that traditional shallow spread foundations will be suitable in the areas of the Site where deeper Made Ground (>1.5m 2.0m thick) and Alluvium are present due to their variability, typically very low strength, and loose relative density resulting in unacceptably high magnitudes of total and differential settlements.
- 4.7.3 Where the Made Ground and Alluvium deposits are typically less than about 1.5m to 2.0m thick, and very lightly loaded structures that are relatively insensitive to settlement are proposed, deep strip or trench fill foundations could be taken through these deposits to found on more competent strata below (assuming competent strata is present). Alternatively, the Made Ground or Alluvium deposits could be excavated and replaced with engineered fill and a ground bearing raft used.
- 4.7.4 Where the Made Ground or Alluvium is greater than 1.5m to 2.0m thick, it may be uneconomical to adopt a traditional pad or deep strip foundation solution, and therefore consideration should be given to Vibrated Concrete Columns (VCC's) or a piled foundation solution.
- 4.7.5 Across the majority of the site, where Till deposits and Glaciofluvial deposits are present, it may be possible to adopt shallow spread foundations for relatively lightly loaded structures where the

underlying material is proved to be at least medium dense or medium strength. However, depending on the nature of the specific structures, consideration may need to be given to ground improvement such as vibro stone or vibro concrete columns, and for heavier and/or more sensitive structures, or where the strata is low strength or relative density is very loose or loose, then a piled foundation solution is likely to be required.

- 4.7.6 Careful consideration will need to be given to potential differential settlement developing between parts of the same building founded on different types of soil such as cohesive Till and granular Glaciofluvial deposits. The design of the proposed structures will need to consider both total and differential settlement, both beneath the whole structure and between individual foundations.
- 4.7.7 For any structures founded within areas of peat, there will be significant risk of differential movement between buildings and external pavement areas. Careful consideration will need to be given to mitigating the effects of differential movement, particularly at building thresholds or utility connections.

4.8 Piled Foundations

4.8.1 Piled foundations are likely to be required where strip or pad foundation depth becomes excessively deep, where the size of the foundation becomes excessively large, or where the magnitude of predicted settlements for pad or strip footings is unacceptable. It is therefore anticipated that medium and heavily loaded structures or structures that are sensitive to total and/or differential settlements such as the pool and leisure facility, hostel and hotel will require piled foundations.

4.9 Floor Slabs

- 4.9.1 The Made Ground and Alluvium, and other areas where the strata is identified as being of low strength or very loose/loose relative density, are unlikely to provide adequate support to floor slabs. As such, it is recommended that suspended ground floor slabs with suitable void are constructed in these areas.
- 4.9.2 It is anticipated that ground bearing floor slabs can be used on any engineered fill placed or on the Till and Glaciofluvial deposits (except where described as above), subject to loadings and serviceability requirements.

4.10 Design of Buried Concrete

4.10.1 The measured pH values and concentrations of water soluble sulphate measured on samples of soils recovered as part of the ground investigation are summarised in Table 4.1 below.

Table 4.1 Results of pH and Water Soluble Sulphate Analysis

No. of Results	pH Range	Water Soluble Sulphate (mg/l) Range
38	5.2 – 8.0	<12 - 108

- 4.10.2 The values provided above correspond to Design Sulphate Class DS1 conditions as defined by BRE (2017).
- 4.10.3 It is assumed that the groundwater conditions at the Site are mobile and therefore It is considered that the Aggressive Chemical Environment Concrete (ACEC) class for the site is AC2z.

PHOEN TO PRIME HOUSE Pround Condition Assessment

RIVERSIDE, BALLOCH

Belowground Structures

- 4.10.4 Utilities including the INEOS High Pressure Oil Pipeline and other gas apparatus are known to be present below the surface of the site. Known utilities (and where available, standoff zones) are included on **Figures 1 4**.
- 4.10.5 A belowground void was encountered during hand digging at borehole WS 40. It was later suggested that this void relates to a redundant 18" culvert at approximately 2m depth. The direction and extent of this feature is not known and may require further investigation with an excavator. This feature is not included on service plans which have been reviewed (and are included on **Figures 1 − 4**) which suggests that it is not Scottish Water plant.
- 4.10.6 The eastern area of the site is known to have had extensive rail lines running north / south. The extent to which these rail lines have been removed or simply buried is not known.

5 Assessment of Soil and Groundwater Contamination and Ground Gases

5.1 Risk Assessment Strategy

- 5.1.1 The assessment of risks associated with contaminated land are based on the use of a Conceptual Site Model to identify 'source-pathway-receptor' linkages.
- 5.1.2 A significant risk can only exist if a Source (contamination capable of causing harm) is present together with a Receptor (sensitive to harm by the contaminant) and a Pathway (a mechanism through which the contaminant Source can reach and affect the sensitive Receptor).
- 5.1.3 The magnitude of the risk from a given source of contamination is determined by the sensitivity of the receptor and the likelihood of the receptor being exposed to the contaminant.
- 5.1.4 Potential receptors include humans (development workers and future site users), future buildings and structures and the water environment.
- 5.1.5 A quantitative risk assessment of the potential risks posed by contaminant sources requires an understanding of the nature of the proposed development. Since the Masterplan for the Riverside and Woodbank developments is being refined at the time of writing this preliminary investigation report, a generic quantitative risk assessment will be used. In this preliminary investigation report, soil contamination will be described as elevated when concentrations exceed the most conservative assessment criteria (which relate to residential garden soils).
- 5.1.6 Once the development layout has been refined, a more detailed assessment of the results can be undertaken. Further investigation may also be required in certain areas. The more detailed risk assessment will be carried out to determine whether any remedial measures are required.

5.2 Preliminary Conceptual Site Model

5.2.1 Although the layout and detailed development plans have yet to be finalised, a preliminary conceptual site model, setting out potential Sources, Pathways and Receptors is included here to assist with the assessment of potentially significant of contamination.

5.3 Potential Sources

- 5.3.1 The majority of the site has remained undeveloped. The main exceptions to this are the area of railway land in the east, the small superficial quarries (potentially backfilled with material of unknown origin) and the buildings associated with the hotel at the Woodbank area. These areas are considered the main potential sources of onsite contamination.
- 5.3.2 The offsite dye works represents a further potential source of contamination.
- 5.3.3 Made Ground and Peat can be a source of ground gases resulting from microbial decay.
- 5.3.4 Potential sources of contamination are presented Table 5.1 below.

Table 5.1 Summary of Potential Sources of Contamination

Source	Comment
On-Site	
Railway land	Railway land is often a source of contamination from the material used as ballast (including clinker and ashy material) as well as operational leaks and spills.
Made Ground	Made Ground or fill material of unknown origin can be a source of a range of contaminants including organic and inorganic compounds. Asbestos may be present within demolition rubble. If organic material is present, microbial decay can generate ground gases.
Peat / Organic Soils	Microbial decay can generate ground gases
Off-Site	
Dye-works	Potential for waste material from the adjacent historical dye works being deposited on site. The dye works may have affected groundwater, subsequently migrating below the Site.

5.4 Potential Receptors

- 5.4.1 Potential receptors will include development and maintenance workers, future users, surface and groundwater and proposed buildings and structures.
- 5.4.2 Table 5.2 below summarises the sensitivity of potential receptors assuming no mitigation measures are in place.

Table 5.2 Summary of Sensitivity of Potential Receptors

Receptor	Sensitivity	Comment
Site Workers	High	Ground workers and construction workers are likely to come into direct contact with soils, albeit for a short period of time. As the potential risk is to human health, the sensitivity is considered to be high.
Future Site Users	High	Future users include employees, day visitors and residential tourists who will have variable exposure scenarios to the potential contaminants.
		However, since the potential risks are to human health, the sensitivity is considered to be high.
Ground Water Resources	Moderate	Groundwater is currently considered to be of poor quality, albeit with a target of continuous improvement.
Surface Water Resources	Moderate	The site is immediately adjacent to the River Leven and Loch Lomond. The River Leven is considered to be of poor quality, albeit with a target of continuous improvement.
Built Environment	Moderate	Proposed buildings are potentially at risk from aggressive ground conditions caused by low pH or high sulphate and from the build-up of gases in confined spaces.

5.5 Potential Pathways

5.5.1 Table 5.3 below summarises potential pathways via which receptors could be affected by contamination and ground gases.

Table 5.3 Potential Exposure Pathways

Pathway	Comment	
Direct contact with skin, ingestion or inhalation of soils or soil derived dust	exposed, potentially contaminated surface soils. Workers may be exposed to direct contact with contaminated soils.	
	Future site users may be exposed to potentially contaminated surface soils whilst working at or visiting the site.	
Migration of gasses and accumulation in confined spaces	Ground gasses can migrate and accumulate in confined spaces with the potential to cause asphyxiation (CO ₂ and CH ₄) or explosion (CH ₄)	
Migration of mobile contamination to surface water receptors	Mobile soil contamination can migrate with shallow groundwater flow, potentially impacting surface water receptors.	
Migration of mobile contamination to groundwater receptors	Mobile soil contamination can migrate vertically, potentially impacting surface water receptors.	

5.6 Scope and Objectives of Contamination Investigation

- 5.6.1 One of the objectives of this preliminary investigation was to determine the presence of contamination sources within the soils and ground water and in the form of ground gasses.
- 5.6.2 Soil samples were recovered from 57 locations across the site. Analysis of soil samples was undertaken with the objective of quantifying the presence or absence of contamination in soil samples representative of conditions on site.
- 5.6.3 In summary, samples were tested for the following suite of potential contaminants (No. of samples shown in brackets):
 - Metals: arsenic, cadmium chromium (III & VI), copper, lead, mercury, nickel, selenium, zinc, beryllium, boron and vanadium (63 samples),
 - pH (63 samples),
 - Petroleum hydrocarbons with carbon banding (63 samples)
 - Polycyclic Aromatic Hydrocarbons (PAHs): USEPA 16 species (23 samples)
 - Asbestos (63 samples)
- 5.6.4 Environmental monitoring wells were installed in 36 of the boreholes to enable gas monitoring, groundwater levels monitoring and groundwater sampling.
- 5.6.5 Gas monitoring has been undertaken on six occasions over 12 weeks.

- 5.6.6 Groundwater samples were recovered from 15 wells for the following laboratory analysis:
 - Metals: arsenic, cadmium chromium (III & VI), copper, lead, mercury, nickel, selenium, zinc, beryllium, boron and vanadium (15 samples),
 - pH and hardness (CaCO3) (15 samples),
 - Petroleum hydrocarbons with carbon banding (6 samples), and
 - Polycyclic Aromatic Hydrocarbons (PAHs): USEPA 16 species (13 samples).

5.7 Confirmed Soil Contamination – Woodbank

- 5.7.1 Despite the presence of Made Ground near the existing / ruined buildings, no potentially significant contamination has been encountered in soil samples recovered from the Woodbank site area.
- 5.7.2 It should be noted that no investigations have been undertaken from within the building footprints.
- 5.7.3 Given that the main hotel building was destroyed by fire, the potential exists for limited contamination to exist in soils within the building footprint. In particular, polycyclic aromatic hydrocarbons (PAHs) are often associated with combustion. If asbestos containing materials were present in any of the structures on site, the potential exists for asbestos to be present in structures or rubble that currently remain on site.
- 5.7.4 At the time of writing, it is unknown whether an attempt will be made to retain some or all of the existing buildings / remnants of buildings for inclusion within the proposed development. Depending on the outcome of these proposals, additional ground investigation locations are likely to be required within the existing / ruined building footprints.

5.8 Confirmed Soil Contamination – Riverside

- 5.8.1 No significant contamination was encountered within soil samples recovered from the natural soils to the west of Pier Road or South of Ben Lomond Way.
- 5.8.2 Elevated concentrations of heavy metals (lead and less frequently, arsenic and hexavalent chromium) were encountered within Made Ground soils to the east of Pier Road and North of Ben Lomond Way. These are likely to be associated with the former railway land and activities and potentially linked to the offsite dye works.
- 5.8.3 Concentrations of lead ranged from a maximum of 5,100mg/kg (in WS47) to a minimum of 5.1mg/kg. The average concentration of lead was 268mg/kg. The most conservative assessment criteria for lead is 200mg/kg which is the Category 4 Screening Value (C4SL) for soils in a residential garden scenario. Fourteen soil samples contained concentrations of lead above the C4SL of 200mg/kg. The 14 locations, together with the lead concentrations are included on **Figure 4**.
- 5.8.4 With the exception of WS46 (which is in close proximity to Pier Road), all of the potentially elevated concentrations of lead were located in Made Ground to the East of Pier Road and north of Ben Lomond Way.
- 5.8.5 A single soil sample contained a concentration of arsenic that was above the threshold for residential garden soil (65mg/kg arsenic in WS38). This location is indicated on **Figure 4**.
- 5.8.6 A single soil sample contained a concentration of hexavalent chromium that was above the threshold for residential garden soil (8mg/kg hexavalent chromium in WS49). This location is indicated on **Figure 4**. The elevated chromium concentrations correspond approximately with an area that driller noted some green colouration in soils during the site investigation.

Issue No.01

- 5.8.7 No asbestos was encountered in any of the 63 samples analysed from Riverside and Woodbank.
- 5.8.8 A summary table including all chemical analysis results, with exceedances highlighted is included in **Appendix C**.

5.9 Assessment of Ground Gases

- 5.9.1 At the time of writing this preliminary report, ground gasses have been measured in 36 boreholes on 6 occasions. The results are included in **Appendix D**.
- 5.9.2 Using the approach recommended in CL:AIRE (2012) and endorsed in BS 8485 (2015), the Woodbank Site and the area of the Riverside site to the west of Pier Road and south of Ben Lomond Way may be classified as Characteristic Situation 1 as defined in BS 8485 (2015). This Situation is representative of ground with a very low potential for gas generation. For Characteristic Situation 1, BS 8485 (2015) advises that no special gas protection measures are required.
- 5.9.3 Within the areas to the east of Pier Road and the north of Ben Lomond Way the site is classified as CS2 for gas. This is due to the carbon dioxide (CO₂) and methane (CH₄) being recorded at concentrations above the trigger values of 5% and 1% respectively during the monitoring even though flow rates remained low.
- 5.9.4 As expected, the elevated concentrations of ground gases correspond with Made Ground and Peaty soils.
- 5.9.5 Depending on the nature of the structures proposed for this area, there may be a requirement to incorporate gas protection measures. The appropriate gas protection measures are dependent on the proposed building design and end use, however, typically gas protection measures comprise a combination of barrier (e.g. concrete slab, gas resistant membrane) and a ventilation layer (e.g. a void space).

5.10 Assessment of Groundwater

- 5.10.1 Samples of groundwater were collected from 15 boreholes and tested for the potential contaminants listed at 5.6.6, above. The results are included in **Appendix E**.
- 5.10.2 Concentrations of potential contaminants in the groundwater samples were assessed against appropriate threshold criteria.
- 5.10.3 The surface water quality of Loch Lomond and the River Leven are the primary receptors for consideration in this assessment due to the potential for groundwater below the site to migrate into the Loch. Therefore, the most appropriate assessment criteria selected were typically Environmental Quality Standards (EQS) for freshwater. EQS are designed to be used in assessing water quality within surface water bodies after dilution has occurred. As such, they are considered to be highly conservative thresholds for comparison with samples of shallow groundwater.
- 5.10.4 The potential risk to groundwater is considered a lower priority. This investigation has confirmed that shallow groundwater is not present consistently across the site. Rather, perched groundwater is present discontinuously across the site in natural superficial deposits and made ground. Given that there are no known groundwater abstractions within 1km of the site, and the fact that the depth to the bedrock aquifer is in the region of 50m (in the north / east of the site, perhaps shallower in the south / west) no specific assessment of the risk to groundwater as a resource has been undertaken.
- 5.10.5 The Tier 2 assessment reported in this preliminary site investigation report is based on a direct comparison of concentrations of potential contaminants measured in samples of groundwater recovered from within soil or made ground.

PHOENIX DIRIMAN GILLAND TED round Condition Assessment

RIVERSIDE, BALLOCH

5.10.6 No exceedances were observed for the majority of the potential contaminants tested. The exceptions were: chromium, copper, lead, nickel, zinc, fluoranthene, and benzo(g,h,i)perylene. Each of these potential contaminants were recorded at concentrations above the most conservative surface water quality criteria and each of which will be discussed below.

Chromium

The groundwater sample from borehole WS40 contained a concentration of $6.1\mu g/l$ in exceedance of the long term mean EQS of $4.7\mu g/l$, although well below the short term (95 percentile) of 32 $\mu g/l$. WS40 was advanced into made ground and soil samples were analysed for potential contaminants. Chromium was not found to be elevated with respect to the human health criteria in soil samples from this borehole.

Copper

Concentrations of copper exceeded the EQS of $1\mu g/l$ in ten out of the fifteen samples, including samples from boreholes within made ground and within natural soils. The maximum recorded concentration was $5.8\mu g/l$. However, it should be noted that the EQS is based on the bioavailable fraction of the dissolved copper present within the surface water receptor following dilution and is therefore considered to be a conservative threshold for comparison.

Nickel

The maximum concentration of nickel recorded was 12 μ g/l. Concentrations of nickel exceeded the annual average EQS of 4μ g/l in ten out of the fifteen samples, including samples from boreholes within made ground and within natural soils. None of the concentrations were elevated compared to the Maximum Acceptable Concentration (MAC) of 34 μ g/l. The MAC applies to dissolved nickel, whilst the EQS for annual average applies to bioavailable nickel.

Lead

The concentrations of lead exceeded the freshwater annual average EQS of $1.2\mu g/l$ in four samples. None of the samples exceeded the MAC of $14 \mu g/l$.

Zinc

Concentrations of zinc exceeded the EQS of $11.9\mu g/l$ in nine out of the fifteen samples, including samples from boreholes within made ground and within natural soils. However, it should be noted that the EQS is based on the bioavailable fraction of the dissolved zinc and is therefore considered to be a conservative threshold for comparison.

PAHs

Benzo(a)pyrene (BaP) can be considered as a marker for the other PAHs. None of the samples tested contained concentrations of BaP that were above the laboratory limit of detection (LOD) of 0.01 μ g/l. The EQS for the Annual Average is 0.00017 μ g/l (below the LOD used in this analysis) but the maximum allowable concentration is 0.27 μ g/l.

5.11 Summary of Groundwater Assessment

Samples of groundwater from across the site recorded concentrations of heavy metals that were, in some cases, elevated by comparison to the most conservative assessment criteria typically Annual Average (AA) EQS. However, with the exception of zinc and copper (which do not have a Maximum Allowable Concentration EQS), none of the samples were elevated by comparison to the less conservative Maximum Allowable Concentration (MAC) EQS.

Riverside & Woodbank Estate, Balloch

PHOENEX ARIAN PILANTED round Condition Assessment

RIVERSIDE, BALLOCH

The EQS for both copper and zinc are based on bioavailable concentrations, whereas the laboratory results are for the dissolved metals regardless of bioavailability. The actual bioavailable proportion would inevitably be lower than the total amount measured.

EQS thresholds are designed to be protective of the freshwater environment and are therefore intended to be applied at a compliance point within the surface water, after dilution has occurred, or to direct discharges. Therefore, it is highly conservative to compare these thresholds to samples of ground water recovered from boreholes within made ground or natural soils.

Both the River Leven and Loch Lomond are categorised as 'poor' for ecology and 'pass' for quality by SEPA due to physical modification and heavy recreational use. As such, despite their proximity, these receptors are considered to be of only moderate sensitivity.

It is considered highly unlikely that groundwater from the site is causing significant pollution of Loch Lomond or the River Leven as a result of the marginal concentrations of contamination encountered here. Contaminants have been recorded at relatively low concentrations and are likely to exhibit relatively low mobility through soil pores. The rate of flux of shallow perched groundwater from below the site into Loch Lomond is likely to be low. Furthermore, if contaminated groundwater from the site did reach the river or loch, the effect of dilution from such a large body of water would be highly effective.

6 Summary of Constraints and Recommendations

6.1 Summary

- 6.1.1 This investigation has established the characteristics of shallow soils at the site including geotechnical and contamination status.
- 6.1.2 It is anticipated that the constraints discussed below will be taken into consideration as the next iteration of masterplan for the site is produced.
- 6.1.3 As the Masterplan evolves, more detailed geotechnical investigations will be required in certain areas.
- 6.1.4 The contamination encountered will be assessed in more detail in the context of the proposed end use, with further assessment and delineation likely to be required.
- 6.1.5 Following the next phase of geotechnical investigation, recommendations for foundation solutions, soil remediation and gas protection measures for the various structures and areas of the site will be made.

6.2 Geotechnical Conclusions

- 6.2.1 Perched shallow groundwater may be encountered within excavations to form foundations or service trenches. An allowance should be made for pumping groundwater from excavations.
- 6.2.2 Road design will require to take cognisance of the presence of peat, made ground and soft ground conditions in the east. Localised excavation and replacement with competent material or the formation of a piled load transfer blanket may be required.
- 6.2.3 If buried services that are sensitive to settlement (e.g. sewers) are required within the eastern area, it may be necessary to avoid areas of peat, excavate and replace peat or, use ground improvement techniques.

6.3 Foundations

- 6.3.1 Shallow spread foundations are unlikely to be suitable within the eastern area where deeper Made Ground, Alluvium and Peat are present.
- 6.3.2 Where Made Ground, Alluvium and / or peat are greater than 1.5 2.0m thick, it may be most economical to consider vibrated concrete columns (VCC) or a piled foundation solution.
- 6.3.3 The Till and Glaciofluvial deposits present across the majority of the site may be suitable for shallow spread foundations for relatively lightly loaded structures. Heavier structures, or those with particularly low tolerance for settlement may require ground improvement (e.g. VCC) or piled foundations.
- 6.3.4 In summary, piled foundations are considered likely to be required for heavily loaded structures such as the swimming pool, leisure facility, hotel and hostel. For areas where strata have been identified as low strength, suspended floor slabs incorporating below slab voids are recommended.
- 6.3.5 Structures such as glamping (wood and canvas tents), pods, picnic areas and woodland paths may be suitable for the eastern area without ground improvement, as these are very lightweight and unlikely to be sensitive to a degree of settlement. Note that contamination and gas will need to be considered (see **Section 6.4**, below).

6.4 Contamination / Ground Gas Conclusions

- 6.4.1 No elevated contamination was encountered in soils at the Woodbank site, however, no investigations were undertaken within the footprints of the existing / ruined buildings. In particular, the footprint of the building destroyed by fire may represent a potential localised source of contamination.
- 6.4.2 Potentially elevated concentrations of lead were encountered in samples of Made Ground in the east of the Riverside site, as well as individual examples of elevated hexavalent chromium and arsenic.
- 6.4.3 No elevated ground gases have been detected to date across the majority of the site, which can be designated as CS1 (requires no special gas protection measures).
- 6.4.4 Methane and carbon dioxide were detected at concentrations slightly above the trigger concentrations to the east of Pier Road and north of Ben Lomond Way which will be designated as CS2. Depending on the nature of structures and / or buildings proposed it these areas, it will be necessary to consider the need to incorporate ground gas protection measures.
- 6.4.5 Concentrations of some heavy metals were recorded in borehole samples of groundwater were elevated compared to the most conservative EQS thresholds. However, the effect of the presence of marginally elevated contamination within perched groundwater below the site is considered unlikely to significantly impact surface water quality in Loch Lomond and no known groundwater abstractions exist within 1km of the site.

6.5 Contamination / Ground Gas Recommendations

- 6.5.1 Limited additional trial pitting and sampling is recommended around the areas of WS46, WS47 and WS49, in order to better understand and delineate the elevated concentrations of contamination encountered.
- 6.5.2 Depending on the development proposals for the areas where contamination was encountered, additional site investigation is likely to be required to delineate contamination and form a remedial strategy.
- 6.5.3 The remedial strategy is likely to comprise localised excavations of contaminated material and the replacement with clean fill / capping material or hardstanding. This will be confirmed after the proposed end use of these areas is known and a more thorough risk assessment has been carried out.
- 6.5.4 Depending on the proposals for the existing derelict buildings at Woodbank, additional investigation is likely to be required within these footprints for potential contaminants of concern including asbestos and PAHs.
- 6.5.5 Marginally elevated concentrations of heavy metals were encountered in samples of groundwater recovered from boreholes. The results of testing for PAHs were inconclusive. A further round of groundwater sampling and analysis is recommended, along with the collection and analysis of surface water samples from the Loch and the River Leven.
- 6.5.6 Construction and ground workers should take cognisance of the presence of contamination as reported here. Method statements, risk assessments and PPE will be required to mitigate potential risks.
- 6.5.7 Where new buried potable water pipes are proposed, UK Water Industry Research (UKWIR) compliant testing of soils will be required to determine the acceptable water pipe material.

PHOEN X DRIMAN GILL Dround Condition Assessment

RIVERSIDE, BALLOCH

6.6 Geotechnical / Foundation Recommendations

- 6.6.1 Heavy structures will need specific site investigations to determine the most effective and economical foundation solutions.
- 6.6.2 Where piled foundations are likely to be required, site investigation will focus on determining the depth to competent strata, noting that the depth to bedrock may vary considerably from reported depths of around 50m in the north and east, to reported depths of around 5m just off site to the south east.
- 6.6.3 Buried concrete structures should conform to Design Sulphate Class DS1 an Aggressive Chemical Environment Concrete Class (ACEC) AC2z.

Essential Guidance for Report Readers

This report has been prepared within an agreed timeframe and to an agreed budget that will necessarily apply some constraints on its content and usage. The remarks below are presented to assist the reader in understanding the context of this report and any general limitations or constraints. If there are any specific limitations and constraints, they are described in the report text.

The opinions and recommendations expressed in this report are based on statute, guidance, and best practice current at the time of its publication. Peter Brett Associates LLP (PBA) does not accept any liability whatsoever for the consequences of any future legislative changes or the release of subsequent guidance documentation, etc. Such changes may render some of the opinions and advice in this report inappropriate or incorrect and the report should be returned to us and reassessed if required for re-use after one year from date of publication. Following delivery of the report PBA has no obligation to advise the Client or any other party of such changes or their repercussions.

Some of the conclusions in this report may be based on third party data. No guarantee can be given for the accuracy or completeness of any of the third party data used. Historical maps and aerial photographs provide a "snap shot" in time about conditions or activities at the site and cannot be relied upon as indicators of any events or activities that may have taken place at other times.

The conclusions and recommendations made in this report and the opinions expressed are based on the information reviewed and/or the ground conditions encountered in exploratory holes and the results of any field or laboratory testing undertaken. There may be ground conditions at the site that have not been disclosed by the information reviewed or by the investigative work undertaken. Such undisclosed conditions cannot be taken into account in any analysis and reporting.

This report has been written for the sole use of the Client stated at the front of the report in relation to a specific development or scheme. The conclusions and recommendations presented herein are only relevant to the scheme or the phase of project under consideration. This report shall not be relied upon or transferred to any other party without the express written authorisation of PBA. Any such party relies upon the report at its own risk.

The interpretation carried out in this report is based on scientific and engineering appraisal carried out by suitably experienced and qualified technical consultants based on the scope of our engagement. We have not taken into account the perceptions of, for example, banks, insurers, other funders, lay people, etc. unless the report has been prepared specifically for that purpose. Advice from other specialists may be required such as the legal, planning and architecture professions, whether specifically recommended in our report or not.

Public or legal consultations or enquiries, or consultation with any Regulatory Bodies (such as the Scottish Environment Protection Agency or Local Authority) have taken place only as part of this work where specifically stated.

References

- BS 8485 (2015) Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings. British Standards Institution: London.
- BS 10175 (2013) Investigation of potentially contaminated sites Code of practice. British Standards Institution, London.
- CIEH (2015) The LQM/CIEH S4ULs for Human Health Risk Assessment. The Chartered Institute of Environmental Health, Nottingham.
- CL:AIRE (2012) A Pragmatic Approach to Ground Gas Risk Assessment. Research Bulletin RB17, Contaminated Land: Applications in Real Environments, London.
- CL:AIRE (2014) Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination. Final Project Report SP1010 (Rev 2), Contaminated Land: Applications in Real Environments, London.
- Defra (2010) The River Basin Districts Typology, Standards and Groundwater threshold values (Water Framework Directive) England and Wales) Direction 2010. Department of the Environment, Food and Rural Affairs, London.
- DETR (2000) The Water Supply (Water Quality) Regulations, 2000. Statutory Instrument 2000 No 3184. Department of the Environment, Food and Rural Affairs (formerly Department of the Environment, Transport and Regions), London.
- EA (2004) Model Procedures for the Management of Land Contamination. Contaminated Land Report CLR11. Environment Agency, Bristol.
- NHBC (2016a) NHBC Standard Part 4 Foundations, Chapter 4.1, Land quality managing ground conditions. National House Building Council, Amersham, Buckinghamshire.
- NHBC (2016b) NHBC Standard Part 4 Foundations, Chapter 4.2, Building near trees. National House Building Council, Amersham, Buckinghamshire.
- Scottish Government (2014) Environmental Protection: The Scotland River Basin District (Status) Directions 2014
- SEPA (2006) Environmental Protection Act 1990: Part 2A Contaminated Land Statutory Guidance: Edition 2 (Scotland)
- SEPA (2009) Groundwater Protection Policy for Scotland V3.
- SEPA (2014) Position Statement WAT-PS-10-01 V3 Assigning Groundwater Assessment Criteria for Pollutant Inputs.
- SEPA (2014) Supporting Guidance (WAT-SG-53) Environmental Quality Standards and Standards for Discharges to Surface Waters.
- UKWIR (2011) Guidance for the selection of Water Pipes to be used in Brownfield Sites.

PHOEN A DRIMAN GRAND TED round Condition Assessment

RIVERSIDE, BALLOCH

Figures

- 1. Site Investigation Locations with Indicators of Presence and Depth of Made Ground
- 2. Site Investigation Locations where Peat was Encountered
- 3. Composite Plan of Shallow Ground Conditions Showing Approximate Distribution of Peat, Alluvium, Glaciofluvial Deposits and Till
- 4. Site Investigation Locations where Soil Contamination was Encountered and ground Gas Characteristic Situations (CS1 and CS2)

RIVERSIDE, BALLOCH

Appendix A Borehole Logs

	IX DRIELII BE, BALL	VG ^{SE} IMIT	EsD g Depth	Le (me	vel OD) D	Depth	_			Des	scriptio	n of Strata					Legend	Water	Symbo	Backfill D@@	tΙ	
	B, J, T, V J, T, V	LOCH				<u>0.3</u>	Brow to eld up to	n organic songated su 12 cm of su um dense	slightly gr bangular sandstone to very de	ravelly sand fine of vari e and igned ense brown	dy clay vious lithous rock	with high cobb ologies, cobble c. (TOPSOIL)	ole cor es are	ntent. Ge flat to	Gravel is elongate	flat ed	<u> </u>		S		XXXXXXX	
	B, J, T, V SPT=					1.3	_	o medium stone, igne	SANĎ. G eous rock	Gravel is cul and other	bic tó é litholog	to very clayey longated subar ies.	ingula	r fine to	cóarse	of					XXXXXX 1	1.3
1.20	T 50/						- - -			FND	OF BO	REHOLE					+	5	+			
							-			LIND	OI BO	NEI IOLL										
							_															
							-															
							-															
							_															
							-															
							-															
							-															
							-															
							-															
							-															
							-															
							_															
							_															
							-															
							-															
							-															
							-															
							-															
							_															
							-															
							-															
							-															
							-															
							-															
							-															
	Flush		selling		Wat	ter Ad	de d To		Grou	und-water o Time(mi	سم امد	Diam	+.	To D		Loca	ation:		1		+	-
Returns	Type To Depth	From	То	Time(hr)	FIOIII	'	10	Struck	Rose I	o i ime(mii	ns) Cu	Ι Οπ	Τ'	Boring	Casir	ig)71.5)37.8		
																Leve	el:	-				
																Ori	entatio	_{n:} Vertic	al			
Remarks: SPT refusa	Il 1.3 m depth.	· ·		•			Equipn	nent:				ethod: spection Pit	to		.20m	Boi	rehole	No:			7	-
	1						Dart				W	/indow Samp	pler t	to 1.	.30m			1.4	IC.	10		
																		V	/S(J		
															(Centrac	t No:	2304			\dashv	
Dritter	Originator					ВС	ORF	HOLF	E RF	CORI						_		Fig. Pla t.			1	
ተ ለঊ'	MM				_	_ ``			e 1:50	_	_			_			100	de				
Chk & App SG	Status Final				W	/ES	T RIV	ERSIE	E, BA	ALLOCI BALLOC	 H						3	15				
					٧	v LC	, i iXi	v LINOI	JL, D	,/\LLU(JI I							10	neet			

ρű	INE!		esis IIVII	CESID (1	Level											٦	Water		ackfill	
pare	/Beeth	SIĐE, BAĈĈ	NG LIMI ™C⊔	Depth	1	(mOD)					Desc	ription o	f Strata				Legend	Depth	Symbol	20 00	Į l
28/5	YER	SIDE, BALL	ОСП				0.2	# TOF	PSOIL.								F	 •`.*`.•`	S	$\stackrel{\otimes}{\otimes}$	{
							0.6		y bound SA	AND and G	RAVEL.							ο · · · · ·			0.60
								_											\perp		
								-			END O	F BORE	HOLE								
								-													
								-													
								_													
								_													
								-													
								-													
l								_													
l								_													
								-													
								-													
								_													
								_													
								-													
								-													
l								-													
								_													
								-													
								-													
5								-													
á								_													
9								_													
								-													
								-													
5								-													
								-													
								-													
5								-													
								-													
								_													
								_													
								-													
								-													
								_													
Ś								_													
5								-													
 			<u> </u>		1									1 -	Dor#				+-		4.
Re	eturns	Flush Type To Depth	From	hiselling To	Time		ater Ad	To	Struck	Ground Rose To	d-water Time(mins	Cut Of	Diam		Depth Casin	Locati	on:				
i i	Ţ							T		<u></u>											
																Level:		-			
																Orier	ntatio	on: Vertica	al		
Re	marks					l		<u> </u>				Moth	l od:			Bore					<u> </u>
		otion based on dril on at 0.6 m depth	llers record	S.				Equipm Dart	ient:			Meth-	oa: ection Pit t	0	0.60m	Boile	IIOIC	NO.			
	ostructi	on at 0.6 m deptn	l .															١.٨	,,,,	\	
																		VV	/50)2A	
															C	igntract l	No:	2304			╣
L		l Culata t										1				L					_
	Dritter	Originator MM					В	ORE	HOLE	REC	CORD	1				-		Fig.Papt.			
	NG	IVIIVI						_	Scale							1	1-	de			
c	hk & Ap					\	VFS.	TRIV			LOCH					1	A)	13			
	SG	Final				,	WES	šť Řľv	VĖRSI I	DĖ, BA	LOCH	Н					3	(Se			
L																	4)) Sh	oot .	1 of 1	

PiH (ĐEN ŒRS	IX DRI	ELIN BAREEU	<mark>С</mark> °ЕІМ	Depth]	Level (mOD)	Depth _0.1	0_			Desci	iption of	Strata				Legend	Water VDepth	Symbo	Deptr	h 0.2
2017								_ 0.8	-		s. (MADE C	GROUND)							-	_	9-10	0.5
	1.20	SPT=29							_ 0# Clay	bound SA	AND + GRA	AVEL.							5. · · · · · · · · · · · · · · · · · · ·			, ,
		4.5	5/7.7.8.7					_	Brown suban	n gravelly v gular to ro	very sandy ounded of i	CLAY with gneous rocl	low plastic and othe	city. Gravel r lithologies	is flat to e	longated						>
	2.00 2.00	SPT=31 B, T 2.3	3/4 4 11 12	2					-													, ,
	2.60	SPT=	<u>L</u>				_		50_ -			END OF	BOREHO	OLE						_	Ħ	2.6
									- - -													
									-													
									- - -													
									- -													
									-													
									- - -													
									-													
									-													
									-													
									-													
									- - -													
									-													
Retu		Flush Type To	Depth	From	Chiselling To	Time(h		ater Ado	de d To	Struck	Groun Rose To	d-water Time(mins	Cut Off	_ Diam -	Boring 2.60	Casin 2.60	Locati	ion:		<u>'</u>		\dagger
																	Level:		- Vortio	al		
	narks: escripti	ion based	on drille	ers record	ds.		<u> </u>		Equipm Dart	ient:			Metho	d: ction Pit to		.20m 2.60m		hole	No:	aı		<u> </u>
SPT	refusa	al at 2.6 m	depth.					'	Duit					ow Sampl					V	/S0)2B	
		Origina	ator 1													C	entract	No:	2304			1
q	Killer	MN	1					ВC	DRE		E REC	CORD	•				الح	Dr	Fig. Plat.			
	& App SG	State Fin					٧	VES WES	T RIV	ERSID VERSI	DE, BAI DE, BA	LOCH	4				1	3	The state of the s			

PHOENI.	X DRIELIN DE, BAREL	GSISIMI PED9	Level (mOD)	Depth _0.1	Description of Strata Water Description of Strata	Depth
0.25	B, J, T, V J, T, V	0011			# TOPSOIL. Soft brown organic very sandy CLAY.	
1.20	B, J, T, V SPT=10 T 22/2332	1.20			Medium dense brown silty gravelly fine to medium SAND. Gravel is cubic to	
1 1	B, T SPT=14 T 44/4343	2.20			Ithologies. - D Medium dense to dense light brown to brown silty gravelly fine SAND with fine silt New York SAND with fine silt	
2.80	B SPT= T 7.15/15.50	3.00			-	
				3.3	END OF BOREHOLE	*** 3
					- - - -	
					- - - -	
					- - - -	
					- - - -	
					- - - -	
					- - - -	
					- - - -	
	lush	Chiselling From To	Time(hr) Fro	ater Add	O Struck Rose To Time(mins Cut Off 125 330 300 300	3311.0
					N 68° Level: - Orientation: Vertical	1827.4
	on based on drill at 3.3 m depth.	ers records.			quipment: Part Method: Inspection Pit to 3.30m Window Sampler to Method: 1.20m 3.30m Window Sampler to WS	806
	Originator				Centract No: 2304	
Chk & App	MM Status		V		REHOLE RECORD Scale 1:50 RIVERSIDE, BALLOCH T RIVERSIDE, BALLOCH	
SG	Final			WES	T RIVERSIDE, BALLOCH	+ 1 of 1

PáH Rá	OEN Pers	IX DRIELI Be, Ball	NGSEIM EGCH	Depth	Le (m	evel iOD) l	Depth 0.20	_			Desc	ription of	f Strata				Legend	Water Depth	Symbo	Dep	h (0.20
2017	0.25	B, J, T, V J, T, V					_	# TOP	prown slig	htly organ elongated gneous ro	ic gravelly subangula	very silty r to subro	clayey fine to ounded fine t	o medium o medium	SAND.				_	\exists	-T	
	1.00 1.20	B, J, T, V U (22)		1.2	q			Soft to	firm brow	vn to greyi s. Gravel i	sh brown sa s flat to elor l igneous ro	andy grav gated su	elly CLAY w bangular to	rith low pla subround	asticity and ed fine to	<u> </u>			\perp		= 1 0	1.00
							1.70	Stiff bi sand loof san	rown to gr enses. Gr dstone an	reyish brov avel is flat id igneous	vn sandy gr to elongate rock.	avelly CL d subang	AY with high gular to subro	n strength ounded fir	and silty ne to medi	um					0	
	2.00 2.00	SPT=33 B, T 4.6/8.7.8.1	ιο				-	Stiff bi subrou					to elongated gneous rock								0	
							2.80	- - 0_										-0			。 	2.80
							-	-			END O	F BORE	HOLE					_				
								-														
								-														
								_														
								-														
								-														
2								_														
								-														
5								-														
500								-														
2								-														
								-														
								-														
								-														
								-														
								_														
								-														
								-														
								-														
								-														
								-														
			1 .	Nai a a Ui a a		l w:	ater Add	od I		Crown	d water			I To F	Depth	1					4	-,
Ret		Type To Depth		Chiselling To	Time(hr)	Fron		To	Struck	Rose To	d-water Time(mins	Cut Off	Diam 125	Boring 2.80	Casing 2.80	Locati	on:			45.4		
r de la companya de l																Level:		- N C	817	81.8		
1																Orier	ntatio	n: Vertica	al			
Rei	marks:	ion bass district	llore re-	10		l		quipm	ent:	l	I	Metho		1	.20m	Bore					+	$^{\perp}$
Bar		ion based on dri sal at 2.8 m dep		<i>າ</i> ວ.				DART					ection Pit to low Sampl) 2	.80m							
																		W	' SC	8(
Rei Daming and American Control of the Control of t															q	entract I	No:	2304			\dashv	
	Dritter	Originator MM					ВС	REI	HOLE	E REC	CORD	İ						Fig. Pa ¢.			1	
		141141								1:50						المح	On	de				
Cr	nk & App SG	Status Final				٧	VEST WFS	RIVI	ERSID	E, BAI	LLOCH ALLOCI	4				"	E	JE .				
						,	0			, <i>Di</i>		•					1					

Bare S	10EN	IX DRIELI IDE, BAL	ÑĠ⁵ÉIMI ₽₩₩	Depth		Level (mOD)	Depth	-			Desc	cription o	of Strata				Legend	Water	Symbo	Dep	h 0.20
26	0.25 0.50	B, J, T J, T	LOGIT						yish brown s angular fine logies. (MAI			sand and ne, shale,	gravel. Grav brick fragme	vel is flat to ents and ot	cubic her				-	0_1	0.50
	1.00 1.20	B, J, T SPT=15 T 2.3/3.3.4.	5.	1.20			_	SAN and -	lium dense t ID. Gravel is other litholo	s elongate	ght brown t d subangul	to brown s ar fine to	slightly silty v medium of s	ery gravell andstone,	y medium gneous ro	ock					- 1
	2.00	B SPT=23 T 4.4/6.5.6.	6.	2.20				- - -													°
	2.80	В					_ 3.0	-										a			o <u>3.00</u>
	3.00	SPT= 50/		3.00		_		-			END C	F BORE	HOLE					-	+		1
Printed: 13/00/2017 16:33:36 Proentix Drilling Ldd, 2 Nairif Road, Jeans Industrial Estate, Livingston, West Lorinar, End-6-647 E-mail: Info@proentxdrilling.co.uk 1et: 01306411446																					
lustrial Es								-													
1, 2 Naim Road, Deans inc		Flush Type To Depth		hiselling, To	Time(h		ater Ado	d ed To	Struck	Groui Rose To	nd-water Time(mins	s) Cut Of	Diam 125	Boring 3.00	Casine 3.00	Level:			6817	11.5 39.1	
St.58 Phoenix Unilling Lite	emarks:	al and no recov	ery at SPT a	at 3.0 m	depth.	•		Equip Dart	ment:		<u> </u>		nod: ection Pit t dow Samp	о з	.20m .00m	Bore	hole		/S′	12	<u> </u>
13/06/2017 16:	Driller	Originator MM					ВС	ORI	EHOLE Scale	E RE(CORD)						Fig.PNot.			_
Printed:	thk & App SG	Status Final				V	VEST WES	T RI	VERSIC IVERSI		LLOCH ALLOC	H H				"		C.	4	4 -5 4	

1.02 S. J. T. V	PHOEN RAVERS	IX DRIEN	IGSEIMI PESDG	Level (mOD)	Depth _0.1	Description of Strata Water -	Depth
1.00 B, J, T, V SPT = 10	0.25	B, J, T, V	OCH			## TOPSOIL. Soft brown organic gravelly sandy CLAY Gravel is flat to elongated subangular	
2.00 B,T		SPT=10	1.20		_	Soft to firm light brown to yellowish brown slightly gravelly sandy to very sand CLAY with intermediate plasticity. Gravel is flat subangular fine to medium of eandstone and other lithologies.	-
270 SPT= 7.15:15:50 270 SPT=		<u>S</u> PT=14	2.20			- - - - - - - - - - - - - - - - - - -	
- END OF BOREHOLE	2.60 2.70	B SPT= 7.15/15.50	2.70			- vitriologies.	
						<u> </u>	_ ***
	Returns		Chiselling From To T			Struck Rose To Time(mins) Cut Off 125 3.00 Casing 2.70 N 68 Level: - Orientation: Vertica	31732.3
Returns Type To Depth From To Time(hr) From 10 Struck Rose To Time(mins) Cut Off 125 3.00 2.70 N 681732.3 Level: Orientation: Vertical	# Description					Inspection Pit to 3.00m Window Sampler to	S13
Returns Type To Depth From To Time(hr) From To Struck Rose To Time(mins) Cut Off 125 3.00 2.70 E 238265.4 N 681732.3 Level: - Orientation: Vertical Remarks: # Description based on drillers records. SPT refusal and no recovery at 2.7 m depth. Equipment: Dart Dart Dart Window Sampler to Window Sampler to Window Sampler to WS13	Deille r	Originator MM			ВС	PREHOLE RECORD Scale 1:50	
Returns Type To Depth From To Time(hr) From To Struck Rose To Time(mins) Cut Off To Struck N 681732.3 Level: - Orientation: Vertical Remarks: # Description based on drillers records. SPT refusal and no recovery at 2.7 m depth. Borning Casing 2.70 Method: Inspection Pit to Window Sampler to Window Sampler to Window Sampler to Tight To Sample	Chk & App SG	Status Final		V	WEST WES	RIVERSIDE, BALLOCH T RIVERSIDE, BALLOCH	

PHOENIZ RAVERSI	X BRIELING DE, BARELU	3°EIMI PED9	Level (mOD)	Depth 0.10	Description of Strata Water -	Backfill Off Depth So
0.25 0.50 1.00 1.20	B, J, T, V J, T, V B, J, T, V SPT=33 T 46/6.9.9.9	1.20			#TOPSOIL. Soft brown organic gravelly very sandy CLAY. Gravel is elongated subangular fine to coarse of sandstone, igneous rock and other lithologies. Dense brown silty gravelly medium SAND. Gravel is elongated subangular fine to medium of sandstone and igneous rock.	
2.20	B, T SPT=41 T 10.10/9.10.11	2.20			Dense greyish brown silty sandy fine to medium GRAVEL. Gravel is flat to elongated subangular to subrounded of sandstone, igneous rock and other lithologies.	
	SPT= 10.12/50	3.00		3.00	Light brown to brown silty gravelly medum SAND. Gravel is flat to elongated subangular fine to coarse of igneous rock and other lithologies. No recovery for SPT.	_ 0 0 3 _
Returns T. Returns T. # Description SPT refusal Chik & App SG						
FI Returns T	ype To Depth	Chiselling From To Time		ater Add	O Struck Rose To Time(mins) Cut Off Boring Casing Cocation:	88214.5
Remarks:					1.50 1.50 20 Level: - Orientation: Vertica	31687.0
# Descriptio SPT refusal	n based on drille and no recovery				quipment: art Method: Inspection Pit to 3.15m Window Sampler to W Centract No: 2304	S14
Driller Driller	Originator MM				REHOLE RECORD Scale 1:50	
Chk & App SG	Status Final		V	VEST WES	RIVERSIDE, BALLOCH FRIVERSIDE, BALLOCH	ot 1 of 1

PHOEN RAYERS	IX DRIELII IDE, BALI	NGSEIMI POCH	Depth	Le (m	evel OD) D	epth 0.10) <u> </u>			Desc	ription o	f Strata				Legend	Water	Symbo	Dept	h 0.2
0.25	B, J, T, V J, T, V						#TOPS Soft bro		nic slightly ngular med	gravelly sa dium of vari	andy CLA ous lithol	Y with roots. ogies.	. Gravel is	s flat to						-T
1.00	B, J, T, V SPT=29 T 24/6.7.7.9	a.	1.20	0			Firm to: flat suba	stiff brow angular f	vn gravelly ine to coa	/ slightly sar rse of sands	ndy silty (stone, ign	CLAY with lo eous rock ar	w plastici nd other li	ty. Gravel i ithologies.	is —					0
1.50	B SPT=		1.70			1.70	<u>-</u>										<u></u>		Н	1.7
	50/					+	-			END O	F BOREH	HOLE					_	\dagger		
							- - -													
							- - -													
							- - -													
							- - -													
							- - -													
							- - -													
							- - -													
							- - -													
							- - -													
							- - -													
	Flush Type To Depth		thiselling To	Time(hr)	From	ter Adde		Struck	Grour Rose To	d-water Time(mins	Cut Off	Diam 125	Boring 1.70	Depth Casin 1.70	Level:			816	66.8 60.5	
Remarks: # Descripti SPT refusa	ion based on dri al and no recove	illers recordery at at 1.7	ls. m depth	1.			quipme eart	nt:		<u>I</u>	Metho Inspe Wind	od: ection Pit to low Sampl	0 .	1.20m 1.70m	Bore		No:	/S1	15	
	Ontain or	1												C	entract-l	No:	2304			
Driller Chk & App	Originator MM Status				10/			Scale	1:50	CORD					J.	ST.	Fig.Pard.			
SG	Final				VV	VES1	L KIVE	ERSII	DE, BA	LLOCH ALLOCI	Н					3	Ch Ch	oot :	1 of 1	

HOEN!	X DRIELIN DE, BALL	IGSEIMI PE®D LÖCH Depth	(m())	Depth ∖_0.0	Description of Strata Depth	Backfill Oqu Depth
0.25 E 0.50 C 1.00 E 1.20 S	B, J, T, V J, T, V B, T SPT=4 T 22/1111	1.2	00		#Turf. Soft brown organic slightly gravelly sandy clay with rootlets. Gravel is flat to elongated subangular fine to coarse of various lithologies. (TOPSOIL). Loose greyish brown to dark grey peaty clayey gravelly medium SAND with black dayey greaty lenses and coal traces. Gravel is flat subangular fine of sandstone, igneous rock, coal fragments and other lithologies.	
2.00	J, V SPT=0 B, T <u>aa/aaa</u>	2.0	oc		Extremely soft grey to black clayey sandy PEAT with brown sandy clay lenses.	
3.00 3.00 E	SPT=13 B, T 2.2/2.3.3.5	3.0	00		Medium dense light brown sligthly silty gravelly to very gravelly medium SAND with sandy silt lenses.	
4.00	SPT= 50/	4.0		4.0	END OF BOREHOLE	
Returns Ty	ush ype To Depth	Chiselling From To	Time(hr) Fro	/ater Add	To Struck Rose To Time(mins) Cut Off 125 4.00 4.00 Location: E 23 N 68 Level: - Orientation: Vertical	88427.6 31938.1
	n based on dril and no recover	lers records. ry at at 4.0 m dept	h.		Method: 1.20m Inspection Pit to 4.00m Window Sampler to Window Sam	S16
Dritter Chk & App SG	Originator MM Status Final		,		Scale 1:50 RIVERSIDE, BALLOCH T RIVERSIDE, BALLOCH	

6	മ്പദ)EN		ikests IMI	TEODO		Level										g	Water -		ackfill	.]
ľ	A Marie		SIĐE, BALL	ÖCH	Depth		(mOD)	Depth _0.0 −0.2	05.7 20.			Descri	iption of S	Strata			Legend	Depth	Symbo		
Ì	2017	0.25						,	#1	TOPSOIL. Ash fill (MADE	ODOLING	.						×0 .			
l									Đa cor me	ark brown very Intent and rootle edium of sands	organic si ets. Grave stone and) Ity gravelly I is elongate other litholo	medium to ed subang gies. Cobl	o coarse SA gular to sub bles are eld	AND with low cobbl rounded fine to ongated subangula	le r of /		× · · · ×			
		1.00 1.20	B SPT=18		1.20			1.2	\ sar	indstone.					obble content. Grav ner lithologies.	/		× 			
			T 4.4/4.5.4.5				_	1.6	60 Me	edium dense lig ravel is elongat	ght yellowi	sh brown s jular to sub	lightly silty rounded fi	medium S	AND and GRAVEL um of quartz, igned	ous		5. °. t			1.65
l								-	roc	ck and other lit	hologies.		BOREHO					_	+		
l									-												
l									-												
l									-												
l									_												
l									-												
l									-												
l									-												
l									_												
l									-												
l									-												
l									-												
ę									-												
1									-												
000									-												
<u>-</u>									-												
 D									-												
2									-												
									-												
1 2 3 3 1									-												
									_												
Ĭ									-												
20									-												
5									_												
III III									-												
פאור									-												
, ,									-												
vIII y									-												
alc, L									-												
al ES									-												
Inna																					⊥.
dallo-	Retu		Flush Type To Depth	From C	hiselling To	Time(ater Adom	de d To	Struck	Ground Rose To	l-water Fime(mins)	Cut Off	Diam -	To Depth Boring Casin	Location	on:	E 2	3865	6.6	
Jau, D												1		125	1.65 1.60				8183		
																Level:		-			
1, Z ING																Orien	tatic	n: Vertica	al		
27	Rem		tion bood on dril	llara ragard			•		Equip	pment:			Method		1.20m	Boreh	nole	No:			\dagger
			tion based on dril struction at 1.6 m		ა.				Dart				Windo	tion Pit to w Sample	165m						
																		W	' S1	7	
5															•	Gentract A	نما	2204			∐ Į
5			Originator													- Indoor		20 01			4
00/20	P	riller	MM					BO	OR	EHOLE	REC	ORD						Fig. Plat.			
2										Scale						T	1	1			
		& App SG	Status Final				٧	NES WES	TRI	IVERSIDE RIVERSIDE	E, BAL	LOCH	1			1	1	JE .			
1										LI WIL	_, _,		-				1	100			1

gr ið	OEN	IX DRIE LIN	IG ^S EIMIT		Level (mOD)	Depth	_ Description of Strata	Legend	Water < Depth	Symbo	Backfill Deln	_ h
	/ERS 0.25	B, J, T, V	фсн і	Depth		0.2		Le	Depth	Syr		-
	1.00	B SPT=14		1.20			#TOPSOIL. Dark brown organic silty gravelly medium to coarse SAND with medium cobble content. Gravel is elongated subangular to subrounded fine to medium of sandstone and other lithologies. Cobbles are flat subangular to subrounded of sandstone and igneous rock.			_		٥
		T 23/3.3.4.4				_	Medium dense to dense light yellowish brown slightly silty medium SAND and GRAVEL. Gravel is elongated subangular to subrounded fine to coarse of quartz, igneous rock and other lithologies.		b. t			0
	2.00 2.00	SPT=22 B, T 34/5.566		2.00			- - -		0			
	3.00 3.00	SPT=43 B, T 11.11/12.14	.8.9	3.00		_3.4	- - -		D			- 1
							- END OF BOREHOLE	\vdash	<u> </u>	+		V D
							- - - - -					
							_ - - -					
							- - -					
_		Flush ,	,Chi	iselling		ater Ado	Tiplam + Tip	ion:				\downarrow
		Type To Depth	From	To I	Fime(hr) Fro	m	Struck Rose to lime(mins) Cut Off 125 3.45 3.10 Level:	ntatio	N 6 - _{on:} Vertica	818	21.6 97.5	
# D		ion based on drill truction at 3.1 m					quipment: art Method: Inspection Pit to 3.45m Window Sampler to Centraet	ehole		/S1	18	
	Dritter	Originator MM				ВС	REHOLE RECORD	Visc	Fig. Plat.			4
Ch	k & App SG	Status Final			V	VEST WES	Scale 1:50 RIVERSIDE, BALLOCH FRIVERSIDE, BALLOCH		See .			

P	HOE	NIXS		ŊĠ _ĕ ŗiw	I TED		Level (mOD)	Depth	_			Descr	iption of	Strata				Legend	Water		ckfill	
9	0.2	KSIĐI 5 B.J	E, BARE	фсн	Depth		(02)		20 -	dark brown	n organia s				oval in flat	to olongo	tod	Le	Depth	Symbo		
	0.23	, B, J	1, V							dark brown							—		δ		▓	
								.	-	wn to greyis ngated suba	ngular fine	of quartz, s	andstone	and other l	ithologies	averis			5. t			
ŀ	1.00) B				\Box	_	1.0	00_										b. • . t		***	1.00
									-			END O	F BOREH	IOLE					_	TI		
l									-													
									_													
									-													
									-													
l									-													
									-													
									-													
l									-													
l									-													
l									-													
l									-													
l									_													
									-													
									-													
									-													
									-													
									_													
									-													
									-													
)									_													
									-													
									-													
									-													
									_													
									-													
									-													
									_													
									-													
									-													
L																						1
	Returns	Flush Type		From	Chiselling To	Time(h		ater Ad	de d To	Struck	Groun Rose To	d-water Time(mins	Cut Off	_ Diam	To I	Depth Casin	Location	on:	E 2	23859	9.6	T
																				8199		
																	Level:		-			Ш
																	Orier	ntatio	_{on:} Vertic	al		
2	Remarks		.0 m depth	<u> </u>		<u> </u>			Equip	ment:	•	<u> </u>	Metho	od: ction Pit to	1	.00m	Borel	nole	No:			Ť
ľ) D 3 (1 a C 1	ionat	.o m depar						Dart				liispe	Clion Fit to	U							
																			V	/S19	9	
																C	entract P	No:	2304			┧│
F			Originator																			4
	Dritte		MM					B	ORE	EHOLE		CORD					.040		Fig. Past.			
L	Ohi: C :		Chatrin								1:50						3	35	1			
	Chk & A SG	hb	Status Final				٧	WES WES	r RIV St R	VERSID IVERSI	DE, BAI DE, BA	LLOCH ALLOCI	4					E	J'E			
1																		7/				1

	űН	OE1	NIX Sentoles land	i Gsis IMI	T DEGM		Level								pu	Water		ackfill	.]
ŀ	agy.		NIX DRIELIN SIBE, BALL	фсн	Depth		(mOD)	Depth	-		Description	of Strata			Legend	Depth	Symbo		
ľ	2017		 					0.:	30 − # T	OPSOIL.						8.7.t			
l								-	# 5	AND and GRAVEL.						b. t			
l									-							t. b. t			
l		4.00	CDT-40		4.00			1.	10-							b.P.t			
l		1.20	SPT=18 T		1.20	1		-	Me	dium dense brown to grey avel is elongated subangul d other lithologies.	vish brown silty	fine to medium	SAND and GRAVE	—		υ. υ. t			
l										d other lithologies.	iai to subround	ca inic to coarse	or quartz, sariusio	nic .		b. t			
l		2.00	CDT-24		2.00				-							, p.			
l		2.00 2.00	SPT=21 B, T 4 5/5 4 5 7		2.00				-							ъ			
ŀ							_	_2.4	45 -							₽t		***	2.45
l									-		END OF BOR	REHOLE							
l									-										
l									-										
l									-										
l									_										
l									-										
l									_										
l									-										
l									-										
2									-										
									_										
2									-										
									-										
5.5									-										
į									-										
									-										
9									_										
3									-										
1									-										
									-										
1									_										
2									-										
1634									-										
, (_										
Ď									-										
ומוכי, ד									-										
E LS									-										
i i	-			ı			1		-								<u> </u>		↓.
2	Retu	ırns	Flush Type To Depth	From	hiselling To	Time		ater Ad	Ide d To	Ground-v Struck Rose To Tir	water me(mins) Cut	Off Diam -	To Depth Boring Casing	Location	n:				
, n												125	2.00						
														Level:		-			
, 2 140														Orien	tatio	n: Vertica	al		
		narks:		. '	<u>'</u>				Equi	oment:		thod:	1.20m	Boreh	nole	No:			卄
	# De Barı	escrip el ob	ition based on dril struction at 2.0 m	ners record depth.	is.				Dart		Ins Wi	spection Pit to indow Sample	2 00m						
B																W	/S1	9A	
3													_		la:	2204			
5														e <mark>ntract N</mark>	10:	2304]
		Killer	Originator					B	OR	EHOLE REC	ORD					Fig.Pat.			7
9	•	ν ω,	MM							Scale 1:50				11.	1 -	de			
-	Chl	(& Ap					١	NES.	TR		OCH			N.	*	43			
1		SG	Final				•	WES	ST F	VERSIDE, BALL RIVERSIDE, BAL	ĹŎĊĦ				3)	(See			

HOEN HVERS	IX DRIELIN IDE, BARL	IGSEIMI PEED9	Level (mOD)	Depth	_ Description of Strata Description	Backfill Oquin	0.2
0.25	B, J, T, V			_0.4	Soft dark brown organic gravelly sandy clay with roots. Gravel is flat to elongated subangular fine of various lithologies. (TOPSOIL)		0.5
1.00 1.20	B SPT=11 T 3.2/2.3.3.3	1.20		1.2	Medium dense light greyish brown slightly silty medium SAND and GRAVEL.	0 0	
2.00 2.00	SPT=12 B, T 22/3324	2.00	0		Gravel is elongated Subangular to subrounded fine to coarse of quartz, igneous rock and other lithologies.		
2.90	В			2.9	-		2.9
2.90	В			_	END OF BOREHOLE		
					- - - -		
					- - - -		
					- - - -		
					- - - -		
					- - -		
					- - - -		
					- - - -		
					-		
	Flush Type To Depth	Chiselling From To	Time(hr) Fro	/ater Add	To Struck Rose To Time(mins) Cut Off Boring Casing Casing LOCAUOTI.	38561.6 82021.0	Ť
Remarks:					Level: - Orientation: Vertica		
	truction at 2.9 m	depth.			quipment: Dart Method: Inspection Pit to Window Sampler to Method: 1.20m 2.90m Window Sampler to	S20	
	Originator				Centract No: 2304		1
Dritter Chk & App	MM		,		Scale 1:50		
SG	Final		\	WES WES	RIVERSIDE, BALLOCH T RIVERSIDE, BALLOCH		

HOEN		NGSEIN		(m	evel nOD)	Depth	_			Descri	ption of S	strata				Legend	Water ✓ Depth	Symbol	Backfill Dept	ΤI
VERS	B, J, T, V	<u>LOCH</u>	Depth			0.2	_									Le	XP .	Syr	≱	P
1.00	B, 3, 1, V						-	SOIL. slightly orga gated subar	anic silty gi ngular to si	ravelly med ubrounded	dium to coa fine of sar	arse SANE ndstone an	O with roo d other lit	tlets. Grav hologies.	 /el		x	+		0
1.20	SPT=10 T 12/2.2.3	3				_	to coar sandst	to medium orse SAND. Ottone and oth	Gravel is el	ongated si	ghtly silty g ubangular t	ravelly to voto subrour	very grave nded fine t	elly mediu o mediun	m n of					0 0 0
2.00 2.00	SPT=22 B, T 3.4/5.5.6.	6.	1.0	0			-													0 0
3.00 3.00	SPT=19 B, T 4.7/4.4.5.	6	2.0	0			- - -												<u> </u>	0
4.00 4.00	SPT=2 _{4.6/5.4.6} . B, T	<u> 6</u>	3.0	0		4.1	Firm liq subanç	ght yellowisl gular fine of m dense ligh gated subar	sandstone						 					0 0 0
5.00	В					_ <u>5.0</u>	litholog - -	gated subar gies.	ngular to su		fine to me		andstone a	and other						Р
	Flush	1	Chiselling		l Wa	ater Add	ded I		Ground-	water		la:	To [Depth	<u> </u>					<u> </u> _
eturns	Type To Depti		To	Time(hr)			То	Struck I	Rose To Ti	me(mins)	Cut Off _	Diam -	Boring 5.00		Level	:		6819	608.4 991.3	
marks: Descript	escription based on drillers records.						Equipm Dart	ent:				: ion Pit to w Sampl) 5	.20m i.00m	Bore	ehole		/S2	21	
Dritter		ВС	DREI	HOLE	REC	ORD						No.	Fig. Plat.							
thk & App	Status Final				V	VEST WES	T RIVI	Scale ERSIDE /ERSID	- BALI	_OCH	 I				7//	SA.	Se la			

He	ENI	X SORRIES LANG	NGSEIN		' _{(r}	_evel mOD)	Depth 0.1	_	Desc	ription of Strata			Legend	Water	Symbol	Dept	h l
		B, J, T, V	СОСН	Depth		•	0.1	#_TOP	SOIL.	·	·		Le	Depth xo	Syr	Dep.	
								Loose to elor rock a	greyish brown organic silty grav gated subangular to subrounden nd other lithologies.	velly fine to medium S d fine to medium of s	AND. Gravel is cubi sandstone, igneous	С		_ ×. °٠.	I	H	10
	1.00	В						_	•					·*·.\$			ıı
	1.20	SPT=6		1.2	d			-						×			0
		1.1/1.2.1.2						-						×.٠.×			0
							2.0	- 0						·*			0
2		SPT=15 B, T 3.3/4.3.4.4		2.0	d				m dense nale grev to grev grave	ally medium to coarse	SAND Gravel is			٠ و			0
								cubic	n dense pale grey to grey grave o elongated subangular to subr jies.	ounded fine of sands	stone, quartz and oth	ner		٠٠٠			О
							2.8	0_						×			o
		SPT=15 B, T 4.4/3.5.3.4		3.0	d		_	Mediu suban	m dense slightly gravelly silty di gular fine to medium of sandsto	ayey fine to medium S	SAND. Gravel is			×			О
	5.00	D, 1						_						:.:×			0
								-						×			ο
	1 00	SPT=20		4.0				_						×			0
4	1.00 1.00	SPT=2 _{3.4/5.6.5.4} B, T					4.2		rown sandy SILT.					×			b
									-					×		H	0
							_ 5.0	_ 0_						× ·× ·> _			0
5	5.00	В						-	END OF	BOREHOLE				_			
								-									
								_									
								_									
								_									
								-									
								_									
								-									
								-									
								-									
								-									
								-									
								-									
								_									
								-									
								_									
		lush		Chiselling	Time/b-		ater Add	le d To	Ground-water Struck Rose To Time(mins	Cut Off Diam	To Depth Boring Casing	Location	on:		1 -	05 4	_
eturn	10 1	Type To Depth	From	То	Time(hr	1	-	-	Struck Rose To Time(mins	125	Boring Casing 5.00 5.00	9				85.4 28.1	
												Level:		-			
												Orien	itatio	_{n:} Vertic	al		
	rks: criptic	on based on dri	llers recor	ds.		-		quipm	ent:	Method: Inspection Pit to	1.20m	Boreh	nole	No:			_
_ 55			2.3.3001					Dart		Window Sampl	er to					20	
														V	/S2	22	
											q	entract N	lo:	2304			_
								\DE	HOLE RECORD					=: Dart			_
———	Her	Originator					D(ᇧ	HOLL INCOIND					FIG. 140			
—— Pri	Her	Originator MM)KE	Scale 1:50			Z.	Dr	Fig. Plate.			
	& App					V	VFST	RIV				All s	A.	Fig. 140.			

PÎHQE RÎVER	KSII	SORIELIN DE, BALL	ДСН ПС [®] ЕІМ	Depth		Level (mOD)	Depth 0.1	Ξ			Desc	cription o	of Strata				Legend	Water	Symbo	Dep	ΗL
0.2		, J, T, V	_					# TOPSOIL Light brown		ine to me	dium SAN	ID.						× · · · · · · · · · · · · · · · · · · ·	<u> </u>	0	- - 0. 0
1.0 1.2		PT=10		1.2	0		1. 1	Greyish bro subangular Loose to m	own slig r fine to nedium	ghtly grav medium dense lig	velly silty fi of igneous tht brown s	ne to med s rock. silty fine to	dium SAND. o medium S <i>i</i>	Gravel is	flat			× · · · × · · · · × · · · · · ×			
2.0	0 S	PT=11 1.2/3.2.3.3		2.0	0		<u>2.1</u>	-	ense gre	evish bro	wn silty fin	ne to med	ium SAND w	vith some s	sandv silt			× · · · × · · · × · · · · × · · · · · × · · · · · ×			0
2.8	0 B					_		lenses.	51100 grv			OF BORE			Sandy Sile			× · · · · · · · · · · · · · · · · · · ·			° <u>2.</u>
								- - -													
								- - -													
								- - -													
								- - -													
								- - -													
								- - -													
								- - -													
								- - -													
								- - -													
Returns	Flu		From	Chiselling To	Time(h		ater Ado		ruck F	Ground Rose To	d-water Time(mins	s) Cut O	Diam	To [Depth Casin	Locat	tion:	F 2	2385	37.8	 -
													125	2.80	2.80	Level			820	75.4	
	iption	based on dri		ds.		•		quipment: art	:		•		iod: ection Pit t dow Samp	0 2	.20m 2.80m	Bore	ehole		/S2	23	
	ı	Origination													C	igntract	No:	2304			
Dritte Chk & A		Originator MM							Scale	1:50						7//	A.	Fig.PN6.			
Chk & A SG	фр	Status Final				V	VEST WES	RIVER: FRIVER	SIDE	E, BAL DE, BA	LLOCH	H					¥3)	The state of the s			

VERS	X DRIELIN DE, BALL	I <mark>G^{SE}IMI</mark> PI ÖCH	e pth	Level (mOD)	Depth	_ Description of Strata	Symbo	ackfill Dept	\vdash
0.25	B, J, T, V				0.5	Soft dark brown organic gravelly clayey SAND with low cobble content and roots. Gravel is flat to elongated subangular fine of igneous rock and other lithologies. Cobbles are flat, subangular of igneous rock. (TOPSOIL)			 0. o
1.20	B, T SPT=15		1.20			Orangey brown silty clayey medium to coarse SAND and GRAVEL. Gravel is elongated subangular to subrounded fine to coarse of sandstone, igneous rock and other lithologies.			
	T 44/4434					Medium dense light brown to grevish brown slightly silty gravelly fine to medium SAND. Gravel is flat to elongated subangular to subrounded fine to medium of igneous rock, sandstone and other lithologies.			э 0
	SPT=11 B, T 2.2/2.3.3.3		2.00			Medium dense to dense light brown to grevish brown slightly silty gravelly			၁
						fine to coarse of igneous rock, sandstone, quartz and other lithologies.			o
3.00 3.00	SPT=17 B, T 2.3/4.4.4.5		3.00						
									b [
4.00 4.00	SPT=3 ¹ _{5.6/6.8.8.9} B, T		4.00		_4.4	- - :: ` : ` : ::			× × ×
						- END OF BOREHOLE			
						- -			
						- - -			
						-			
						- - -			
						-			
						- - -			
						-			
						- - -			
						-			
	Flush	Chise			ater Add	Ground-water Diam To Depth Location:			4
eturns T	Type To Depth	From To	o Tin	ne(hr) Fro	111	Struck Rose To Time(mins) Cut Off 125 4.45 4.00 Level: -			
						Orientation: Vertica	al		
emarks: arrel refus	sal at 4.0 m dep	th.				quipment: Part Method: Inspection Pit to 1.45m Window Sampler to Method: 1.45m Window Sampler to			
						Contract No: 2304	\S2	24A	
Dritter	Originator MM				BC	PREHOLE RECORD			
Chk & App	Status			\ \		Scale 1:50			
SG	Final			•	WĔŚ	RIVERSIDE, BALLOCH T RIVERSIDE, BALLOCH			

HOEN	IX DRILL SIDE, BAI	INGSEIN EÖCH	/II PEED 9 Depth	Lev (mC	el D) Depth	h	Descr	iption of Strata			Legend	Water	Symbo	Dep	Τl
0.25	B, J, T, V				_0.	0.50 Sot Co	ft dark brown organic gravelly claye avel is flat to elongated subangular abbles are flat, subangular of igneou	y sand with low cobbli fine of igneous rock ar s rock. (TOPSOIL)	e content and roots. nd other lithologies.			\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		0	
1.00 1.20	B, T SPT=13 T 1.2/3.3.	L3	1.20		1.	GR	ose to medium dense orangey brow RAVEL. Gravel is elongated subang ndstone, igneous rock and other lith	ular to subrounded fin	to coarse SAND and e to coarse of			b • t • b • t • b • t			
2.00 2.00	SPT=22 B, T 5.5/5.61	i 6	2.00				edium dense light brown to greyish t ND. Gravel is flat to elongated suba- leous rock, sandstone and other lith					×0			0
						gra	adium dense light brown to greyish t avelly fine to medium SAND. Gravel brounded fine to medium of igneous ologies.	is flat to elongated su	bangular to						0
3.00 3.00	SPT=15 B, T 3.4/3.4.3	L <u>5</u>	3.00			- - -									
4.00 4.00	SPT=26 B, T	.10	4.00			- -							_	**************************************	。 ※
					4.	.45 -						····		**	
						- - -	END OF	BOREHOLE							
						- - -									
						-									
						-									
						-									
						- - -									
						- -									
						-									
eturns	Flush Type To Dep	th From	Chiselling To	Time(hr)	Water Ad	dde d To	Ground-water Struck Rose To Time(mins	Cut Off Diam -	To Depth Boring Casing 4.45 4.00	Locatio	on:			36.5 79.8	
										Level: Orien	tatio	- _{n:} Vertica			
emarks: arrel refu	ısal at 4.0 m d	epth.				Equi Dart	pment:	Method: Inspection Pit to Window Sample		Boreh	nole		/S2	25	
		_							Ç	ntract N	lo:	2304	_		\dashv
Dritter	Originator MM				В	OR	EHOLE RECORD Scale 1:50			ما	Qu.	Fig.PN6.			
Chk & App	Status Final				WES	STR	IVERSIDE, BALLOCH RIVERSIDE, BALLOCI			Na	Y	15			

	วับคร	NIX	Semblesian	i kests IVI	ITEM	1	Level										þ	Water		ckfill	
ľ			DRIELI E, BA ^{RE} I	MG LIMI	Depth	1	(mOD)	Depth 0.3				Descr	iption of	Strata			Legend	Depth	Symbo	Depth	0.20
ľ	0.2	5 B,	J, T, V						_	OPSOIL.								p	10)	╼╼	
l								-	Ora	angey brown to AVEL with brorounded fine	to greyish l	brown silty	clayey me	edium to co	arse SAND a	nd to		b t	\top		0.50
l									sub	prounded fine	to mediun	n of sandsto	one, igned	ous rock and	d other litholo	gies.		ο. · · · -	+		
l	1.0	0 В						1.:	20									1.6.		HI	
l	1.2	0 SF	PT=24		1.2	d			Τ-							_		b . t		H	
l		'	3.4/5.7.6.6	i				.	Me with	dium dense g h brown sand nedium of sa	reyish bro	wn silty clar ses. Gravel	yey medit is elongat	um to coars ted subangi	e SAND and ular to subrou	GRAVEL Inded fine		b. t			1.70
ŀ									to r	medium of sa	ńdstóne, ig				S.			• n •	\perp	ή.	1.70
l									-			END OF	BOREH	IOLE							
l									-												
l									-												
l									-												
l									-												
l									-												
l									_												
l									-												
l									-												
l									-												
l									_												
l									-												
1									-												
									-												
									-												
									-												
									-												
1									-												
									-												
									-												
									-												
									-												
ı									_												
									-												
1									-												
									_												
									-												
									-												
ľ									-												
ĺ									_												
									-												
Ļ				•					<u> </u>										<u> </u>		↓.
-	Returns	Flus Typ			Chiselling To	Time		ater Ad	de d To	Struck	Ground Rose To	d-water Time(mins)	Cut Off	_ Diam	To Dep Boring	Casing	tion:	Ε2	23870	6.3	
í														125	1.70	1.70		N 6	8211	0.0	
																Level	l:	-			
																Orie	entatio	on: Vertic	al		
"	Remarks		ı	<u> </u>				$\overline{}$	Equip	ment:	<u> </u>		Metho	od:	1.20	om Bore	ehole	No:			╁
١	# Descri Barrel re	ption efusal	based on dri at 1.7 m dep	llers record th.	ls.				Dart				Inspe	ction Pit to ow Sampl	0 170						
																		V	/S26	3	
١																					
																Centract	: No:	2304			┪┃
Ì	Deille	_	Originator					R)bi	EHOLE	RFC	:ORD						Fig. Pa f.			7
	Pride	'	MM					יט	⊘ 1 \1	Scale							1	1 19:140:			
1	Chk & A	pp	Status				1	VIEC.	T D"			10011					3	12			
	SG		Final				\	WES	STR	VERSID RIVERSII	DE, BA	LLOCH	1				3	(E			
1																1 1	1/				1

HOENI)	X DRIELIN DE, BALLE	IGSEIMIT OCH	Depth	Lev (mC	vel DD) De	epth 0.20				Desc	ription of	Strata				Legend	Water	Symbo	Dept.	-
	3, J, T, V					1	litholo	brown slig	htly organ is elongat	ic silty fine t ed subangu	o medium lar fine of	n SAND and quartz, sand	I GRAVEL dstone and	with d other	_					,,-,
	SPT=22		1.20				Grave			reyish brow ngular fine o							· · · · · · · · · · · · · · · · · · ·			******
1.75	SPT=		1.75	+		1.75	5										• • • •		***	-1
	50/									ENDO	F BOREH	OLE								
		Ohio			Wate	er Adde	- 		Crown	ad water			То Г	Depth						$\frac{1}{4}$
Returns Ty	ush ype To Depth		selling To T	Time(hr)	From		To	Struck	Rose To	nd-water Time(mins	Cut Off	Diam 125	Boring 1.75		Level:			821	65.8 54.6	
	n based on drill and no recover		depth.				quipm Dart	nent:				od: ction Pit to ow Sampl	⁾ 1	.20m .75m	Bore entract I	hole I		/S2	27	
Dritter	Originator MM					ВО	RE		E RE(CORD					الح	Na.	Fig.PN6.			4
Chk & App SG	Status Final				WE	EST /ES1	RIV T RI	ERSID VERSI	DE, BA DE, B	LLOCH	Н				197		A STATE OF THE PARTY OF THE PAR			

	PHOE	MIXSAL	pesiand	I G sEIMI	Den		Level										рL	Water		ackfill	_
ľ		RSIĐE,	BARE	фсн	Depth		(mOD)						iption of				Legend	Depth	Symbo		§
	0.2	5 B, J, T,	V					_ 0.7	Soft ānd l <u>i</u> thol	dark brown roots. Grave logies. Cobb	organic gr el is flat to oles are fla	avelly very elongated s t subrounde	clayey san ubangular ed up to 13	nd with med fine of igne 3 cm of ign	lium cobble content eous rock and other eous rock. (TOPSC	t DIL)					
l	1.0							_1.	10 Orar GRA	ngey brown	to greyish ellowish bro	brown silty own sandy	clayey med	dium to coa s. Gravel is	arse SAND and elongated subang	 ular		. b. t			
	1.2	l T	3 3.3/3.4.5.6		1.2			1.6	Medi GO Grav	ium dense g vel is elonga	reyish bro ted suban	wn silty clay gular to sub	stone, igne yey mediui rounded fi	m to coarse ine to medi	and other lithologies e gravelly SAND. um of sandstone,	<u>. </u>					
	1.8	0 SPT=			1.8			1.8	<u> 30 </u>	ous rock and ff boulder C		ologies.						<u>×</u>		***	1.80
l			50/					-	-			END OF	BOREHO	OLE				_			
l									-												
l									-												
l									-												
l									-												
l									-												
l									-												
l									-												
									-												
1									-												
0000									-												
D.									-												
03.E0									-												
2									-												
11d@011									-												
_ _ _									-												
i k									-												
5									-												
-Olliali,									-												
VVCSI									-												
ilgstoll,									-												
alc, Livi									-												
II II II II									-												
enniii ei	+	, Flush ,			hiselling	-		ater Ad			Groun	d-water	. 1	_ Diam -	To Depth	Location	on.		++		+
u, Deal	Returns	Туре	To Depth	From	То	Time(I	nr) Fro	m	То	Struck	Rose To	Time(mins	Cut Off .	125	Boring Casir 1.80 1.80	ig Localit	JII.		3866 3821		
																Level:		-			
.tu, 2 INd																		n: Vertica	al		
ľ	Remarks		rocovor	ryat 1.8 m	donth				Equipr Dart	ment:			Method	ction Pit to	1.20m 2 1.80m	Borel	nole	No:			
וספוווא ר	SFT TEIL	usai anu ni	recover	yat I.o III	i depiii.								vvinac	ow Sampl	er to			W	/S2	8	
00.+															(Centract 1	√o:	2304			┧ │
5.01		Orig	inator																		4
3/00/20	PKille	_	ИΜ					B	ORE	EHOLE		ORD				8		Fig. Plat d.			
- 1	Chk & A		atus nal				V	VES WF:	T RI\	/ERSID	: 1:50 E, BAL DE, B <i>A</i>	LOCH	 - 1			AN.	A.	1			
١											,,						1	100			1

БŰL	ΩEI	NIVS	emples ian	NI POSTS IN A I	TEM	,	Level										g	Water		ackfill	
S gre			E. BA ^{Re} l	Ñ Ġ⁵ĖIM I ĽĠCH	Depth		(mOD)	Depth	-			Descr	iption of	Strata			Legend	Depth	Symbo		
2017		رعرو	_, _,						# S	andy TOPS0	OIL.							Y	10)	₩	
								0.	70 -											***	
									-									5, t			
								_1.	10 ^{# C}	range loose	to medium	SAND + G	RAVEL.					b∵t b∵t		***	
								1.	50 # G	Grey loose to	medium S/	AND + GRA	VEL.					0. t			
	4.70	0.00	-		10		_		70 -									<u>×</u>		₩	1.70
	1.70	SP ⁻	<u>50/</u>		1.2				# 8	tiff boulder C	LAY.	END OF	- BOREH	OLE				_	+1		
									-												
									-												
									-												
									_												
									-												
									-												
									_												
									-												
									-												
									-												
									_												
									-												
									_												
									_												
									-												
									-												
									_												
									-												
5									-												
									-												
									-												
									-												
									_												
									-												
									-												
									_												
,									-												
									-												
									_												
\vdash									-										\coprod		\perp
Ref	turns	Flush Type		From C	hiselling To	Time		ater Ac	dde d To	Struck	Ground Rose To	d-water Time(mins)	Cut Off	_ Diam	To Depth Boring Ca	Location	on:				
														125	1.70 1.7	70					
																Level:		-			Ш
																Orier	ntatio	n: Vertic	al		Ш
4	marks		ı	1 1	ı		ı		Equip	ment:			Metho	d:	1.20m	Borel	hole	No:			+'
# D SP	escrip T refu	otion b sal an	ased on dr d no recove	illers record ery at 1.70 i	ls. m depth	ı.			Dart				Insped	ction Pit to ow Sampl	0 170m						
																		V	/S2	8A	
																				=	
																Centract 1	Vo:	2304			1
T	D. ""		Originator							EHOLE	DEC	חםטי						E: Dart			†
	Dritter		MM					ים	OKI		= REC = 1:50					X		Fig.PNot.			
Ch	nk & Ap	р	Status	-			1	V/EC	TDI			I OCh				1	3	12			
	SG		Final				V	WES	ST'R	VERSID RIVERSI	DE, BA	ALLOC!	1				3	(SE			
		- 1		Ī												1 1	1/				1

6	JUNE	NIXSORIELII	i lests i Miltri		[_evel											g	Water		ackfill	_]
ļ		SIĐE, BAR	OCH D	epth	(r	nOD)	Depth _0.0	05./			Descri	ption of S	trata				Legend	y⊅epth ×p	Symbo	Depi	0.20
Ī	0.25	5 B, J, T, V					0.6	en Bro	OPSOIL. own slightly silty oangular to sub	y very grav rounded fi	elly mediur ne to coars	m to coarse se of sandst	SAND. G	Gravel is elo ther litholog	ngated jies.	/-		× · · · -			0.50
l	1.00	D B					1.0	_ 00 Ligh	ht brown silty fi	ine to medi	ium SAND	with pocke	ts of orga	nic matter.		-		:			
	1.20		i				-	SAN san	dium dense lig ND. Gravel is endstone and oth	elongated s	subangular	gravelly to to subroun	very grave ded fine to	elly medium o medium o	to coarse f	<u> </u>		×			
l	2.00) SPT=14		1.00				_										×			
l	2.00	D B, T 2.2/3.3.3.5						-										×			,
l								-										×			
l	3.00	O SPT=22 O B. T 3.3/3.5.6.8		2.00			3.0	00_	P I P.		P - 1-11 211			AND I O	DAN (E)			χο. δ. 't			
l	3.00	5 5, 1 222222					2.0	Gra litho	dium dense lig avel is elongate ologies.	nt brown s ed subangu	ular to subr	meaium to ounded fine	coarse S/ e of sands	and Gi tone and ot	RAVEL. her			b. t_	+		3.30
ŀ						-		<u>60 </u>			END OF	BOREHOL	.E					-	+	***	3.60
l								-													
l								-													
l								-													
-								-													
1								-													
2								-													
9.00.uk								-													
								-													
000								-													
								-													
L L								-													
5								-													
, L								-													
31 50								-													
, 40								-													
66 II A								-													
-otate,								-													
insi ia								-													
Calls	Returns	Flush Type To Depth		elling o	Time(hr		ater Ad	dde d To	Struck	Ground- Rose To T	-water ime(mins)	Cut Off	Diam -	To De Boring	Casing	Locatio	n:	E 2	23862	22.4	†
oad, D													125	3.60	3.60	ا میرما			821		
l all																Level:		- _{n:} Vertic	al		
) LIU, 2	Remarks	 						Fauin				Method:	,			Boreh			<u> </u>		垬
27	# Descri	ption based on dri ostruction at 3.6 m						Equip Dart	oment:				on Pit to	36	0m 0m	201011	J.O 1				
													•					V	/S2	9	
50.45															Ge	ntract N	o:	2304			┧│
		Originator					D/		EHOLE	DEC					\dashv			E:_Bart			4
13/00/2	Dkiller	MM					D(ORI	Scale		OKD					4	\-	Fig.Pat.			
i i i	Chk & A	pp Status Final				٧	VES	ŢŖľ	VERSIDE RIVERSID		LOCH					MAN AND AND AND AND AND AND AND AND AND A	4	1			
1	30						vv ES	эгК	VIVEK9IT	ı⊏, BAI	LLUCF	1					2)	(Ca			

PHOENI MYERSI	X DRIELIN DE, BALL	I GstEIMI PÆ€ ÖCH Dept)g L (n	evel nOD) D	epth 0.15	Description of Strata Description of Strata	Backfill oquing Depth
1.00	B, J, T, V				1.20	# Hardcore (MADE GROUND) Brown slighty organic silty very sandy GRAVEL with low cobble content. Gravel is elongated subangular to subrounded fine to coarse of sandstone and other lithologies. Cobbles are subangular elongated of sandstone.	
1.20 1.20	SPT=49 T 8.11/12.13.		20		2.00	Stiff brown gravelly very sandy CLAY. Gravel is subangular to subrounded of quartz, igneous rock and other lithologies.	0 0 0
						= END OF BOREHOLE = = = = = = = = = = = = = = = = = = =	_
						- - - - -	
						- - - - -	
						- - - -	
						- - - - -	
						- - - - -	
F	lush ,	, Chisellir	a	Wat	er Adde	Ground-water Diam To Depth Location:	
Returns T	ype To Depth	From To	Time(hr)	From	I	Struck Rose To Time(mins) Cut Off Boring Casing Casing	38660.0 82237.8 al
	n based on drill uction at 2.0 m					uipment: Method: Inspection Pit to 2.00m Window Sampler to More No: Work of the properties of the p	S30
Dritter	Originator MM					REHOLE RECORD Scale 1:50	
Chk & App SG	Status Final			W	EST VEST	RIVERSIDE, BALLOCH RIVERSIDE, BALLOCH	

6	9	0E\	u Sem	n les and	Lesis III	TEO		Level											О	Water		ackfill	\neg	
ľ	and a			BA ^{Reg}	I G SEIMI	Depth			Depth _0.0	75.7			Desci	iption of	Strata				Legend	Depth	Symbo	136868	<u> </u>	
ľ	X Y	0.25	SIDE, B, J, T,	BACC	ЮСН	Depth				_	f									XX	ŝ	-	§	
I		0.23	D, 3, 1,	, v						#0 # Tu Brov	ırı. vn slighty or	ganic sligh	ntly clayey o	ravelly m	edium to co	arse san	d. Gravel is	s					<u> </u>	
ŀ								-	0.6	litho	gated subar logies. (TOF	ngular to si PSOIL)	ubrounded	fine to co	edium to co arse of sand	istone an	d other	/_	\vdash	*****		***	×Ψ).65
I									-	# La	irge hardcor	e obstructi		GROUN F BOREH					\vdash	_	+1		-	
I										_													-	
I										-													-	
I										-													-	
I										-													-	
l										_													-	
l										_													-	
l										-													-	
l										-													-	
l										-													-	
l										_													-	
l										-													-	
l										-													-	
l										-													-	
l										-													-	
l										_													-	
l										-													-	
2										-													-	
										-													-	
8										-													-	
5										_													-	
5										-													-	
5										-													-	
3										-													-	
5										_													-	
										_													-	
										-													-	
١										-													-	
5										_													-	
										_													-	
ā										-													-	
I L										-													-	
,										-													-	
Dieg.										_													-	
, [-													-	
Lotat										-													-	
311101										-													-	
			Flush ,		,C	hiselling,			ater Ad			Ground	d-water		⊢ Diam -		Depth	Locati	or.				+	-
	Retu	irns	Туре	To Depth	From	То	Time(hi	·) Fro	om	То	Struck	Rose To	d-water Time(mins	Cut Off	- Inaili	Boring	Casin	g	OII.		3863			
ioad,																		Level:		N 6	823	51.1		
8																				-			-	
7, 7																		Orier	ntatio	on: Vertica	al			
"		narks:		od on dril	lers record					Equipr	ment:			Metho		. (0.65m	Bore	hole	No:			†	Ī
2	Obs	tructio	on at 0.6	5 m dept	h.	5.				Dart				inspe	ection Pit to	0								
8																				W	' S3	3		
-																		1.						
5																	С	idntract I	No:	2304			\dashv	
		Deille -		ginator					R/)BE	HOLE	- REC	CORD	İ						Fig.P q 6			┪	
1000	ı	Killer		MM					יט	J1 \L		- NLC : 1:50						a		LIG: 140:				
<u>.</u>	Chl	« & App	0 8	tatus				•	VIE O	T D"			1.0011					3	30	1				
Ē		SG		inal				١	WES	T R	/ERSID	DE, BAL	ALLOCH	4					3	(E				
1																			1/	1/1			- [

PHOENIZ BUYERSI	X DRIELIN DE, BARL	IGSEIMI PE®D9	Level (mOD)	Depth _0.0	Description of Strata Description of Strata	Depth
1.00	B, J, T, V B SPT=4 T 11/1.1.1.1			0.5	#TOPSOIL. Bark grey to black, silty gravelly medium to coarse sand and dark grey to black ash. Gravel is elongated subangular fine to coarse of sandstone, other lithologies and brick fragments. (MADE GROUND) Loose brownish grey, slightly organic silty very sandy gravel with rootlets and dark grey ash. Gravel is elongated subangular fine to coarse of sandstone, slate, other lithologies and brick fragments. (MADE GROUND) -	
	B, T SPT=8 1.0/1.22.3			2.0	Coose light brown silty clayey fine to medium SAND. Gravel is elongated subangular fine of igneous rock and sandstone. 0 − - - - - - - - - - - - - -	0 0
3.000 The state of the state of	SPT= B 50/			3.0	Digit brown silty gravelly fire to medium SAND. Gravel is elongated subangular fine of quartz, sandstone and other lithologies. - END OF BOREHOLE	- A-30
Returns T	ype To Depth	Chiselling From To	Time(hr) Fro	ater Add	To Struck Rose To Time(mins) Cut Off Boring Casing Cocation:	8744.6 2354.2
# Descriptio	n based on dril	lers records.			Equipment: Dart Method: Inspection Pit to 3.00m Window Sampler to Method: Inspection Pit to 3.00m Contract No: 2304	537
Chk & App	Originator MM Status Final		V		DREHOLE RECORD Scale 1:50 Fig.Ref. Fig.Ref. Fig.Ref. Fig.Ref. Fig.Ref. Fig.Ref. Fig.Ref. Fig.Ref.	ot 1 of 1

ď	HOE	NIX SAUD	esiandi	Gests IMI	Den	1	Level		F								g.	Water		ackfill]
	VER	NIX DR ISIĐE, E	3A ^{Resu}	рсн рсн	Depth		(mOD)	Depth	-			Descri	iption of	Strata			Legend	Depth	Symbo		
20	0.2		,					_ 0.5	-	oft dark brown ongated suban								0.0.			
	1.00	SPT=31			1.2	o l		1.2	⊤an	rown slightly on ongated suban nd other litholog	ganic claye gular to su gies.	ey medium ıbrounded f	to coarse ine to coa	e SAND and arse of sand	I GRAVEL. G Istone, igneo	ravel is us rock		5. t . 5. t 5 t			
L		Т 3	4/5.6.10.10	1				1.6	Me 65 ve	edium dense to ery gravelly SAI edium of sands	dense gr ND. Grave	eyish browr I is elongate	n to browi	n silty claye gular to sub	y medium to prounded fine	coarse to	-				1.65
								-	me	edium of sands	stone, igne		nd other li BOREH				-	_	+		
									-												
									-												
									-												
									-												
									-												
									-												
									-												
									-												
									-												
2									-												
									-												
									-												
									-												
D									-												
									-												
									_												
									-												
									-												
									-												
									-												
									-												
									-												
									-												
									-												
L																					<u> </u>
F	Returns	Flush Type To	Depth	From	hiselling To	Time(ater Adem	de d To	Struck	Ground Rose To	l-water Time(mins)	Cut Off	_ Diam -	Boring 1.65	Casing 1.50	ation:	E 2	23873	39.5	
														123	1.05	Lev	el:	N 6	8229	96.2	
																		on: Vertica	al		
R	emarks	S:	l						Faui	pment:			Metho	od:	1.20	- Pc	rehole				$\dashv \vdash$
В	arrel re	fusal at 1.5	m depth	۱.					Dart				Inspe	ction Pit to ow Sampl	1.20 0 1.65 er to	וווע					
														-				W	/S3	9	
																Centra	et No:	2304			┧│
-		Origin	ator																		4
	Dritte	MI	М					R(JK	EHOLE Scale		OKD					,L	Fig. Plat.			
	Chk & A						V	VES	TR			LOCH					3	1			
	SG	Fir	nal				•	WĔS	ŤΤ	IVERSIDI RIVERSID	DÉ, BÀ	LĹŎĊŀ	H				3	(See			

ρĵι	OF.	NIX Sampoles Jang	i kasis I MI	Den	1	Level											рL	Water		ackfill	_
and and a	VER	NIX DRIELIN SIDE, BALL	<u>чо гиин</u> Росн	Depth		(mOD)	Depth _0.0	D5.√			Descr	iption of	Strata				Legend	Depth	Symbo		
201	0.25	5 B, J, T, V					,	# T	urf.	oliabth, ora	onio oilta ar	o all and	dium to oo	roo oond	with law		F				
						_	0.6	50 cob sub	wnish grey, soble content, bangular fine gments. Cobl	rootlets, gi to coarse	rass fragme of sandston	ents and d e, other li	lark grey as thologies ar	h. Gravel nd brick ar	is elongat nd pottery	ed				***	0.60
							'	frac	gments. Cobl	oles elong	ated subano END O	gular of sa F BOREH	andstone. (1 IOLE	MADE GR	OUND)			_	T		
								-													
								-													
								-													
								-													
								-													
								-													
								_													
								-													
								-													
								-													
								-													
								-													
								-													
								-													
								-													
								_													
								-													
,								_													
								-													
								_													
								-													
								-													
								-													
								-													
								-													
								-													
								-													
								-													
								-													
								-													
F	-	Flush ,	,c	hiselling	'		ater Ad			Groun	d-water Time(mins		⊢ Diam		Depth	Location	on.				$+_1$
Re	eturns	Type To Depth	From	То	Time(h	nr) Fro	m	То	Struck	Rose To	Time(mins	Cut Off		Boring	Casin	9	J11.		3884 822		
																Level:		-	0022	02.0	
																Orien	ntatio	on: Vertica	al		
,	marks		<u> </u>			<u> </u>	1	Equip	ment:			Metho	od:	<u> </u>).60m	Borel	nole	No:			╫
#[Descrip	otion based on dri	llers record	ls.				Dart				Inspe	ction Pit to	0							
																		W	/S4	0	
															C	Centract P	No:	2304			
L		Originator					_														4
	Dritter						B	ORI	EHOLE	REC	CORD	1						Fig.Pad.			
L	L. 0 .	31.6								1:50						3	37	1			'
C	hk & Ap SG	Status Final				٧	WES WES	TRI STR	VERSID IVERSI	E, BAL DE, BA	TOCH	4					3	JE STORY			
1			Ī														7/	1			1

-02	1		Samples and	l Lests		-	Level											В	10/-1	H-E	ackfill	
Pagrid.		NIX	DRILLIN DE, BALL	NG°ĽIMI ™C⊔	Depth	3	(mOD)	Depth	າ 05_∕			Desci	iption of Strat	ta				Legend	Water Depth	Symbol	2000	_
58 2	Y EN	. OIE	JE, DALI	<u>-00n</u>	+ -				#T	urf.								F	- XXXX	S	$\stackrel{\otimes}{\otimes}$	$\{ \mid$
								0.	Čla 65 -	ayfill bricks p	ottery and I	arge cobbl	es. (MADE GRO	OUND))							0.65
									<u> </u>													
									-			END O	F BOREHOLE									
									-													
									-													
									-													
									-													
l									-													
l									-													
									-													
									-													
									-													
									-													
									-													
									-													
									-													
									-													
									_													
									-													
									-													
									-													
									-													
D									-													
									-													
									-													
									-													
									-													
									-													
									-													
									-													
									_													
									-													
									-													
									-													
									-													
									-													
F		Flu			Chiselling	_		/ater Ad			Ground	d-water	Cut Off Dia	am -		Depth	Locati	on.				$+_{1}$
Re	eturns	Ty		From	То	Time	(hr) Fro	om	То	Struck	Rose To	Time(mins	Cut Off		Borine	Casi	ng	J. 1.				
																	Level:		_			
																	Orio	ototic	on: Vertic	al		
R,	emarks																					
,			based on dril	lers record	S.				Equip Dart	oment:			Method: Inspection	Pit to)	0.65m	Bore	nole	No:			
																			١,٨	10	10A	
																			V	V 32	+UA	
																	Centract I	No:	2304			┪
\vdash			Originator					 					+				┼					-
	Dritte	·	MM					В	URI	EHOLI		URD					- X	iho.	Fig.Pat.			
L	Nels o c		Ct-t								e 1:50						1	30	8			
°	hk & A SG	pp	Status Final				'	WES WES	T RI ST F	VERSIE RIVERSI	DE, BAL IDE. BA	LOCH	-1					3				
											-, - ,							4		t	1 of 1	

ργ	INE!	Samplesiano	L ASIS I NAI	T ESID		Level											p	Water		ackfill	
ang Chi		IX DRILLIN SIĐE, BALL	ÖCH	Depth		(mOD)	Depth _0.0	_ 05_/			Desc	ription of	Strata				Legend	Depth	Symbol	***	§
201	7 =	, , , , , , , , ,					0.5	# Tu	ırf. /fill bricks po	ottery and l	large cobbl	ae (MADE	GPOLIND))					0,		0.50
								-	viiii brioks po	ouci y and i				·',				_			
l								-			ENDO	F BOREH	OLE								
l								-													
l								-													
l								-													
l								-													
l								-													
l								-													
l								_													
l								-													
l								_													
l								-													
l								-													
l								-													
								_													
								-													
								_													
								-													
								-													
								-													
								_													
								-													
1								_													
5								-													
2								_													
5								-													
								-													
								-													
5								-													
								-													
Re	eturns	Flush Type To Depth	From	hiselling To	Time		ater Ad m	de d To	Struck	Groun Rose To	d-water Time(mins	Cut Off	_ Diam		Depth Casing	Location	on:				
ĝ																Loveli					Ш
																Level:		- \/ortio	.1		Ш
	marke											l						on: Vertica	3 1		Ш
	marks: Descrip	tion based on dri	llers record	S.				Equipı Dart	ment:			Metho Inspe	d: ction Pit to	0).50m	Borel	hole	No:			
																		W	'S4	ЮB	
																				02	
																ontract 1	No:	2304			┪
	Dritter	Originator MM					В	ORE	EHOLE	REC	CORD							Fig:Plat.			7
	110	IVIIVI								1:50						L	20	de			
С	hk & Ap	p Status Final				V	VES WES	 ΓRΙ\ ΣΤΡ	/ERSID	E, BAL	TOCH					10		15			
							VV EC	ıΓ	ı v LINOI	UL, DF	\LLUU	1					1	Sh	oot ·	1 of 1	

	HOEN	IX DRIELII IDE, BALI	NG°EIMI ₽ĠCH	Depth) (Level (mOD)		-				iption of					Legend	Water	1 4	Backfill Dage	-
20	0.25	B, J, T, V					0.3	Soft d Elonga	ark brown ated suba	organic d	ayey very g ubrounded	ravelly sa fine to me	nd with root edium of ign	ts. Gravel leous rock	is flat to and other			\	1	$\parallel \otimes \parallel$	
	1.00 1.20	B SPT=42 T 11.12/10.1	11.9.12	1.20	0	_	_1.6	flat su other	gies. (TOI e brown cl ubangular lithologies	to subroui	y medium to nded fine to	o coarse C coarse of	GRAVEL. Gr sandstone,	ravel is eld , igneous r	ongated ar	nd					1.
						_	_				END O	F BOREH	IOLE						+		
								-													
								-													
L								-													\coprod
R	eturns	Flush Type To Depth		thiselling To	Time(h		ater Ado	To	Struck	Groun Rose To	d-water Time(mins	Cut Off	_ Diam = 125	Boring 1.65	Casin Casin 1.40	Level Orie	: ntatio	- _{n:} Vert	682	774.9 257.0	
,	emarks: arrel refu	usal at 1.4 m dep	oth.					Equipm Dart	ent:			Metho Inspe Wind	od: ction Pit to ow Sampl	0 1	.20m .65m	Bore	ehole i		NS	42	
	Dritter	Originator MM							Scale	1:50	CORD	 				7	Dr.	Fig.PN6	<u>t</u>		1
	Chk & App SG	Status Final				V	VEST WES	T RIVI	ERSID /ERSI	DE, BAI DE, BA	LLOCH	4					3	San San San San San San San San San San			

E	% 6		iivS	amples and	VG SEIMI	TEOR	,	Level										р	Water -		ackfill		
ľ				E, BA ^R É	NG LIIVII	Depth		(mOD)	Depth	10-			Desc	ription o	of Strata			Legend	✓ Depth	Symbo		۱ ۲	
ļ	SIY!	0.25	B	, BACI	ОСН	Берит	\vdash			_	2001									(S)		<u> </u>	
l									0.6	# TOF	dark grey	, slightly	organic silt	y slightly	gravelly to gra	avelly medium to						Š	റ ഭറ
ŀ		0.50	J					_		to coa	e sand wit arse of san	h rootlets dstone, ot	and dark gr her litholog	ey ash. (ies and b	Gravel is elong orick fragment	avelly medium to gated subangular f s. (MADE GROUN	fine ND)		×××××		\sim	7	J.00
l									-	-				F BORE					_	\vdash			
l										_													
l										_													
l										-													
l										-													
ı										-													
ı										-													
ı										-													
ı										_													
ı										_													
ı										-													
ı										-													
ı										-													
ı										-													
ı										-													
ı										_													
ı										_													
ı										_													
2										_													
										-													
										-													
5										-													
4										-													
3										_													
1										_													
3										_													
2										-													
										-													
5										-													
1										-													
										-													
2										_													
g T										_													
2										-													
2										-													
900										-													
[-													
Ġ,										_													
2										_													
							\vdash			-										\vdash			
2	Retur		Flush Type	To Depth	From	hiselling To	Time(h		ater Add	de d To	Struck	Grour Rose To	nd-water Time(mins	Cut O	Diam -	To Depth Boring Casir	Location	on:	En	3887	73 0	T	
į,	. vetul	110	, ype	10 Depth	1 10111	10	1,11110(1				Guuck			, 541 0	1	- Domiy Casil	·9			3887 8218			
2																	Level:		-	10	· · ·-		
3																			\/ortics	al le			
7, 7													<u> </u>		<u> </u>	<u> </u>			_{on:} Vertica	A1			
27	Rema # Des			ased on dri	llers record	ls.				Equipm	ent:			Meth	od: ection Pit to	0.60m	Borel	nole	No:			1	\Box
	200	- Jiipt							'	Dart				IIISP	COUCH FIL LO	•							
8																			W	'S4	4		
-																							
15.																(Centract N	lo:	2304			┧	
1			(Originator						<u> </u>			2055				 					4	$\mid \mid$
2000	P _e	riller		ММ					BC	JRE	HOLE	REC	CORD	١					Fig. Pat.				
			_								Scale	1:50					1	20	de				Ι΄
	Chk	& App		Status				٧	<u>VES</u> 1	<u> RIV</u>	<u>ĘRSI</u> D	E, BA	LLOCH ALLOC				1	1	195				
-	3	,0		Final					WES	i RI\	/ERSI	DE, BA	ALLOC	Н				3)	(CE				

VERSI	X DRIELIN BE, BALL	I <mark>G⁵EIM</mark> ÖCH	Depth	1 1	Level (mOD)	Depth	Description of Strata	Legend	Water	Symbo	Depth	
0.25	B, J, T, V						vn organic silty clayey gravelly medium sand. Gravel is flat to elongated angular fine to medium of sandstone, other lithologies and brick and tile ments. (MADE GROUND)		- -			0
1 20	B SPT=1 J, T, V _{1.1/1.0.0.0}		1.2	0		1.2	v loose to loose dark grey to grey, silty gravelly medium to coarse SAND with grey ash. Gravel is elongated subangular fine to coarse of sandstone, other		-		H	
2.00 2.00	SPT=1 B, T <u>1.1/0.0.1.0</u>		2.0	0			grey ash. Gravel is elongated subangular fine to coarse of sandstone, other logies and tile fragments. (MADE GROUND)					
200	CDT_2		2.00			2.9						
3.00	SPT=2 B 2.1/0.1.0.1		3.0			3.1	closes light brown silty clayey fine to medium SAND and GRAVEL. Gravel is gaded angular to subangular fine of quartz, sandstone and other lithologies. I close brown silty clayey gravelly fine to medium very sandy GRAVEL with y and sandy clay bands. Gravel is elongated subangular fine to medium of tz, sandstone and other lithologies.					
4.00 4.00	SPT=0 _{0.0/0.0.0.0} B, T		4.0	0		4.4						
5.00	SPT=0 <u>0.0/0.0.0.0</u> B		5.0	0			to firm greyish brown peaty sandy CLAY.		- 7, 7, 7, 			
						6.0			7 1/2 1/2 1/2 1/2 1/2 1/2			
6.00	В					0.0	END OF BOREHOLE		-		946_	
	lush To Depth	From	Chiselling To	Time(ater Add	Ground-water	ation:	E2	2388	16.9	
							Lev		N 6 - _{on:} Vertic		83.5	
emarks:	for SPT at 1.2	? , 3.0 and !	5.0 m de	epth.	•	E	ment: Method: Inspection Pit to Window Sampler to Method: 0.00m 0.00m	rehole		/S4	15	
							Centra	et No:	2304		- -	
Dritter	Originator MM						Scale 1:50	A.	Fig. Pard.			
SG	Status Final				V	WEST WES	VERSIDE, BALLOCH IIVERSIDE, BALLOCH	W.	The second second			

	gH ဂ	ΕN	IX DRILLIN	ikasie iMi	Dein a		Level		+								Þ	Water		ackfill	.]
ļ		RS	DE, BALL	фсн	Depth		(mOD)	Depth	- ۱			Descr	iption of	Strata			Legend	Depth	Symbo		
ľ).25						_0.4	.40 S	Soft dark brown	organic dangular to su	ayey very g ubrounded	ravelly sar fine to med	nd with root dium of igne	s. Gravel is flat to eous rock and other	r		\$// <u>}</u>			
l								-	+=						elongated and flat eous rock and other			<u> </u>			
l		1.00	В					1.2	_ <u>li</u> .20_	thologies.								٠ <u>٠</u> ٠			
l		1.20	SPT>50 T 6.8/10.14.1	7.21	1.20			-	10	Dense to very d	ense orang	gey brown to	brown si	Ity clayey g	ravelly medium SA			- 			
ŀ							_		.65 G	Gravel is elonga gneous rock an	ated subang ad other lith				um of sandstone,				\perp	***	1.65
l									-			END O	BOREH	OLE							
l									-												
l									-												
l									-												
l									-												
l									-												
l									-												
l									-												
l									-												
ş									-												
1									-												
0.0									-												
AN.									-												
ر ا									-												
פרוואמו									-												
10(%) (1)									-												
<u>a</u>									-												
									-												
5									-												
al,									-												
VESI EL									-												
JSIOII, V									-	•											
, LIVIII,									-												
Estate									-												
Innatilia									<u> </u>												⊥.
Salls -	Return		Flush Type To Depth	From	hiselling To	Time(ater Adom	dde d To		Ground Rose To	d-water Time(mins	Cut Off	_ Diam -	To Depth Boring Casin 1.65 1.20	Location	on:	E 2	3873	33.5	
Load, L														125	1.05	Level:		N 6	8220	04.0	
Na																	itatio	_{on:} Vertica	al		
9 Ltu, 2	Rema	rks:			ļ				Fau	ipment:			Method	d:	1 20 m	Boreh					卄
	Barrel	refu	sal at 1.35 m de	pth.					Dar				Inspec	ction Pit to ow Sample	1.20m 1.65m er to		-				
																		W	/S4	6	
7.45															C	igntract P	lo:	2304			┧│
			Originator					D/	<u></u>	REHOLE	DEC	חםטי						Fig. PN .			┦│
3/00/2	48	Њег	MM					טט	υr		: 1:50					1	1 -	гіу: 1 чо :			
- III	Chk 8		Status Final				٧	WES	TF	RIVERSID RIVERSI		LOCH				(Na.	7	15			
1	,	-						VV ES	٥ I	KIVEKOI	∪⊏, B <i>F</i>	\LLUC!	1				2)	(Co			1

Pi	IOF	NIXSE	Roles land	IG ^S IS IMI		1	Level											p	Water		ackfill	_
B gré	VER	SIĐE.	BARE	I <mark>G⁵EIMI</mark> LÖCH	Depth	'	mOD)	Depth	10=			Descr	iption of	Strata				Legend	VValer VValer	Symbo		{
201	0.25	5 B, J, T	, V						# TC	OPSOIL.	organia ale	0.10.1.10.0.1	royally on	and with roo	to and day	de aray aal			XXXX			
-	0.60) J					-	_0.	60 Grav Frock	dark brown vel is flat to , other lithol	elonganic cia elongated s logies and l	ayey very g subangular brick fragm	to subrouents. (MA	ind with roo unded fine to NDE GROUI	is and dar o medium ND)	of igneou	1. S				***	0.60
									-				F BOREH						_	tl		
									-													
									-													
									-													
l									_													
l									-													
l									-													
l									-													
l									-													
l									-													
l									-													
l									-													
l									-													
l									-													
l									-													
									-													
									-													
									-													
į									-													
									-													
P									-													
									-													
									-													
									-													
									-													
									-													
									_													
									-													
									-													
									-													
b									-													
									-													
									-													
F	+	Flush	1		hiselling,	-	I w	ater Ad	ded	l	Ground	d water			l To I	Depth	1			<u> </u>		+,
R	eturns	Туре	To Depth	From	To	Time(h			То	Struck	Rose To	d-water Time(mins	Cut Off	_ Diam	Boring	Casin	Locati	on:		389		
																	Level:		N 6	821	25.0	
																			Vortice	al.		
																			on: Vertica	1 1		Ш
	emarks opped		potential	chromium	contarr	nination			Equipr Dart	ment:			Metho Inspe	od: ction Pit to	0).60m	Bore	hole	No:			
									Duit										14		_	
																			VV	/ S4	. /	
																C	entract	No:	2304			┧
\vdash		Ori	ginator														<u> </u>					4
	Dritter	l l	MM					B	ORE	HOLE		ORD						200	Fig. Poot.			
											1:50						3	1	1			
	SG & A		Status Final				١	WES WES	T RIN	/ERSID	E, BAL DE, BA	LOCH	4					E	13			
											, _ ,		•					1	1			1

P ₂ HOE	NIX Samples land	i Gsie IVVII	Deeling		Level											Þ	Water		ckfill	_
	NIX DRIELII KSIDE, BALI	фсн	Depth	(1	mOD)	Depth	1 05√			Descr	iption of	Strata				Legend	Depth	Symbo		
2017 0.2	5 B, J, T, V	20011				0.	30 - #	TOPSOIL.								H		10)		
						0.	λο gr	oose dark gre avel with dar andstone, oth	y to black, k grey ash.	slightly orga Gravel is el	anic silty s longated	slightly medi subangular	um to coo	arse sand a	and					0.70
					_		#	Sand + grave	er lithologie el. (MADE C	GROUND)			ADE GRO	JUND)	/			\perp	,,,,	
							-			END O	F BOREH	HOLE								
							-													
							-													
							-													
							-													
							-													
							-													
							_													
							-													
							-													
							-													
							-													
							-													
							-													
							-													
							-													
							-													
							-													
							-													
							-													
							-													
							-													
							-													
							-													
							-													
							-													
							_													
							-													
							-													
							-													
							-													
							-													
							-													
							-									_		$\perp \perp$		
Returns	Flush Type To Depth	Ch From	iselling To	Time(hı		ater Ac	dde d To	Struck	Groun Rose To	d-water Time(mins	Cut Off	Diam -	Boring	Depth Casin	Location	on:	F 2	3894	13	TΙ
	1,750 100 200													,				8202		Ш
															Level:		-			
															Orier	ntatio	n: Vertica	al		
Remark	 S:	<u> </u>	ı		<u> </u>	_	Faui	ipment:	I		Metho	od:	<u> </u>	0.70m	Borel	hole	No:			卄
# Descr	ption based on dri	llers records	i.				Dart				Inspe	ction Pit to	ο '	J. 7 UIII						
																	W	/S5	1	
																			-	
														C	entract 1	Vo:	2304			┪╵
F :::	Originator					D,		EHOL	F REC	COBD	1						Fig. P(4 6).			†
Prite	r MM					ים	υĸ		E REC e 1:50	JUND					a		⊢ig:1 40 .			
Chk & A	.pp Status				1.	VEC.	T D			1.001					A.	30	12			
SG	Final				V	WES	STI	IVERSIE RIVERS	IDE, BAI	ALLOCH	4					3	(Les			
1																4	14	4-4		1

D'A	JOE	NIVS	nepies and	IM <u>e</u> s†S IN∕II	TEch	,	_evel											g	Water -	Bac	kfill]
ggre			DARES	NGSEIMI L⇔CH	Denth	d (r	mOD)	Depth _0.0)5 /			Descr	iption of	Strata				Legend	Depth	Symbo		
鬼	9 E R	5 B, J,	T V	ОСН	Вори				_ 5 # Ті	urf								_	 	σ́)		
l	0.50							0.5	0 100	se dark grey lets and dar dstone, othe	y, slightly o	rganic silty	gravelly n	nedium to c	oarse san	d _, with			💥 📉		***	
	0.50	J J, 1,	v				_	_0.7	root sand	lets and dar dstone, othe	k grey ash er lithologie	. Gravel is f s and brick	and potte	igated suba ery fragmen	ingular fin ts. (MADE	e to coarse GROUNI	e of D)/			}	₩.	0.75
l								`	Ligh	t brown silty to medium	y gravelly fi of quartz, s	ine to medio sandstone a	um sand. Ind other I	Gravel is el ithologies.	ongated s (MADE GI	ubangular ROUND)	· /_		_	\perp		
l								\	# BI	ack ash fill.	(MADE GF	ROUND)	F BOREH		`							
l									_			ENDO	F BOREF	IULE								
l									_													
l									-													
l									-													
l									-													
									-													
									-													
									_													
									_													
l									-													
									-													
									-													
									-													
									-													
									-													
									_													
									_													
									_													
8									-													
									-													
									-													
									-													
n									-													
									-													
									_													
									_													
									-													
									-													
									-													
									-													
1									-													
									-													
									_													
									_													
n n									-													
i S									-													
									-													
									-													
F	1	Flush			hiselling	' '	l w	ater Ado	ded		Group	d-water		. Ie.	To I	Depth	1	<u> </u>		1 1		ŀ,
R	eturns	Type	To Depth	From	To	Time(hr			То	Struck	Rose To	Time(mins	Cut Off	_ Diam	Boring		Location	on:	E 2	39005	5.9	
																	1.		N 6	82020).1	
																	Level:		-			
																	Orien	ntatio	n: Vertica	al		
Re	emarks	S:	1				ı		=quir-	ment:	l	l	Metho	uq.	<u> </u>	1	Borel					片
#	Descri	otion ba	sed on dril	lers record er records	S. "metal"	١			=quipi Dart	ment:				ction Pit to	0).75m	50,61	1016	. 10.			
	ostruct	ion at 0.	75 III (dilii	er records	metai).													10	.050		
																			VV	'S52	<u>'</u>	
																_	entract P	Jo:	2204			Į Į
L																	7 11 4011		20 0 T			<u>[</u>
	Dritter		riginator		_			R)RF	EHOLE	E RFC	ORD		_	_	_			Fig. P 96			
5	ተለውነ		MM					_ (1:50								رام			
<u></u>	Chk & A	nn.	Status														7	30	1			
'	SG		Final				V	VES WF	I RI\ T R	/ERSID	DE, BAL DE RA	TOCH	4					3	1)3			
										01	, <i>DF</i>	0	•					1	1			

PHOENI BYPERSI	X DRILLIN DE, BALL	GSEIMI PEED	I I (mc)	el D) Depth	Description of Strata Description of Strata	Depth 0
1.00	B SPT=0 T 11/0.0.0.0	1.	20	_0.3	# Light brown loose sand and gravel. (MADE GROUND) # Light brown loose sand and gravel. (MADE GROUND) Very loose dark grey to black, slightly organic silty slightly gravelly to gravelly medium to coarse sand with rootlets and dark grey ash, some brown clayey sandy lenses. Gravel is flat to elongated subangular fine to coarse of sandstone, other ### Hthologies and brick and pottery fragments. (MADE GROUND)	
	SPT=0 B, T _{10/0000}	2.	00	_2.8	- - - - - 0	
3.00	SPT=3 B 0.0/1.0.1.1	3.	00	_	Very loose to medium dense light brown to brown silty clayey gravelly medium SAND. Gravel is elongated subangular to subrounded fine to medium of sandstone, igneous rock and other lithologies. -	
4.00 4.00	SPT=9 _{1.1/2.2.2.3} B, T	4.	00	4.4		_
	lush Type To Depth	Chisellin From To	g Time(hr)	Water Add	Cocation: Coca	
Home and					2.70 2.90 10 Level: - Orientation: Vertical	
	n based on drill uction at 4.0 m.	ers records.			Method: 1.20m Inspection Pit to 4.45m Window Sampler to WS	S52A
Dritter Chk & App	Originator MM				DREHOLE RECORD Scale 1:50	ļ
Chk & App SG	Status Final			WES	TRIVERSIDE, BALLOCH TRIVERSIDE, BALLOCH	et 1 of 1

HQEN NERS	IX ^S DRNEU IDE, BAL	NGSEIMI EUOCH	CEsD g Depth	Leve (mOI	D) Depth	_			Descript	ion of Strat	a				Legend	Wate		Backfil Dec	Τl	0.20
2017	F '	_			_0.	0 <u>#</u> Hardcor	e. (MADE	GROUND)								***		_	— 1	
0.50	J, T				_0.			clayey medi ar fine to co		arse SAND ai andstone.	nd GRA	VEL. Gr	avel is fla	at to	+	<u> </u>	<u>:</u> —		°	
1.00 1.20 1.20	B SPT=7 T 4.3/2.2.1.3	2	1.20			Soft to firm is elongate other lithol	n silty sand ed subang logies.	dy gravelly (ular fine to i	CLAY with medium o	n low plasticit of sandstone,	ty and s , quartz,	andy bar igneous	nds. Grav s rock and	vel d			- - -	0	0	
2.00 2.00	SPT=6 B, T _{1.2/1.1.1.}	3	2.00		_2	- - - 0_											- - -	0		
3.00	SPT=21 B 6.5/5.5.5.6	6.	3.00		-	GRAVEL. sandstone	lense light l Gravel is e e, igneous r	brown to br elongated s rock and otl	own very ubangula ner litholo	silty clayey n r to subround gies.	nedium ded fine	SAND a to medi	and um of			b. b.			。 。 ※	3.0
	J	_			_3.	- <u>5 -</u>										0	:		*4	3.4
					-	-		E	ND OF B	OREHOLE							T			
						- - -														
						- - -														
						- - -														
						<u>-</u> -														
						- - -														
						-														
						- - -														
						- - -														
						-														
	Flush Type To Depth	Ch From	To	Time(hr)	Water Ac- rom	To St		Ground-wa			am +	To D Boring 3.45	Casir 3.00	Leve	ation:			988.8 978.3	- 1	
Remarks:						quipment				Method:		-	20-	Ori		on: Ver	tical			
Barrel obst	ion based on dr truction at 3.0 n ple between 1.2	n depth.)art				Inspection Window Sa	Pit to amplei	3	.20m .45m				WS	54		
	1 6	1											(Centrac	t No:	2304	1			
Driller	Originator MM						Scale 1:								ed r	Fig.Pa	‡ .			
Chk & App SG	Status Final				WES WES	RIVER TRIVE	RSIDE, RSIDE	Ballo E, Ball	OCH OCH						STATE OF THE PARTY	The state of the s	Sheet			

P	IQE	NIXSO	Riesen	л <u>е</u> фсн	PED		Level (mOD)	Dent	n _			Desci	ription of	Strata				Legend	Water		ackfill	-
	YER	SIĐE	, BARE	фсн	Depth		(02)		.20_				iption of	Olidia				ř	Depth	Symbo		
	0.28	5 B, J,	I, V					_0		OPSOIL. t dark brown ngated suba	n organic g ngular med	gravelly san dium of vari	dy CLAY ous litholo	with roots. O ogies.	Gravel is flat	to			× · ·			
	1.00							_1	.15 Ligh	nt brown ver	y silty fine	SAND with	silt lenses	3.					×			
	1.20	O SPT=	=17 2.6/5.5.2.5					1	Firm sub	n dark brow angular med	n organic (dium of ign	gravelly very neous rock a	y sandy C and other I	LAY. Grave ithologies.	l is flat to eld	ongated						1.80
							_		<u> </u>			END O	F BOREH	IOLE						+		, , , , ,
									-			2.15	. 2011	.022								
									-													
									-													
									-													
									-													
									-													
									-													
									-													
									-													
									-													
									-													
									-													
									-													
D									-													
									-													
									-													
									-													
									-													
									-													
									_													
									-													
									-													
									-													
									-													
									-													
L								_	-											\sqcup		
Re	eturns	Flush Type	To Depth	From	hiselling To	Time(I		ater A	dde d To	Struck	Groun Rose To	nd-water Time(mins	Cut Off	_ Diam	To De Boring	Casing	Location	on:				$\lceil \rceil$
														125	1.80	1.80	l					
																	Level:		-			
																			_{n:} Vertic	al		Ш
# [emarks Descri	ption bas	sed on dri	llers record	s.				Equip Dart	ment:			Metho Inspe	ction Pit to	0 10	20m 80m	Borel	nole	No:			
Ва	arrel ob	ostructio	n at 1.8 m	depth.					24.1				Wind	ow Sampl	er to	,0111			۱۸	/S5	5	
																			٧١	33	ວວ	
																Ce	ntract 1	lo:	2304			┧
	Dritter		riginator					В	ORF	EHOLE	E REC	CORD							Fig. Plat.			7
	' ለ'ይ'		MM					_			= 1:50	- J. 1 .					L	10	de			
C	hk & Ap		Status Final				١	ŅĘS	T_RI	VERSIC	E, BAI	ĽĽÓČH					Ma	7	13			
	50		. mai	WEST RIVERSIDE, BALLOCH WEST RIVERSIDE, BALLOCH																		

	йμог	יועי	(Same	oles and	IG ^S EIMI			Level											рг	Water	B	ackfill	П	
Ė		KSI	ĐE.	BALÎ	ÖCH	Depth		(mOD)	Depth 0.2	_			Desci	ription of S	Strata				Legend	Depth	Symbol	Dept	h).20
ľ	01/									# TOPSOIL												1) 50
l									0.8	# Dark brov	vn CLA	Y.										H	M	
l																				×		引	 	
l									1.1	# Silty SAN	D.									<u> </u>		4		
ŀ		4						_	_1.5	# Dark brow	vn CLA	Y.								<u>*</u>			 - <u> </u>	.50
l									-	_			END O	F BOREHO	DLE				\vdash	_	+			
l										_														
l										-														
l										_														
l										-														
l										_														
l										_														
l										_														
l										-														
l										-														
l										-														
l										-														
l										-														
2										_														
2										_														
2										-														
										-														
5										_														
										=														
5										=														
										_														
2										-														
1										-														
										_														
7 5										_														
										-														
231 1										-														
										-														
20										-														
I,										-														
L Co										-														
																							Ш	_
	Returns		ush /pe	Γο Depth	From	hiselling To	Time		ater Ad	o Stru	ıck R	Ground lose To	d-water Time(mins	Cut Off	Diam -	Borin		Locati	on:					
, E															125	1.50	1.50	1						
																		Level:		-				
7																		Orier	ntatio	on: Vertica	al			
	Remark					l		ı		quipment:				Method	l:	1	1.20m	Bore	hole	No:			\dashv	\dashv
:	# Descr Barrel c	iptior bstru	base	d on dri at 1.5 m	llers record depth.	S.				art				Inspec	tion Pit to w Sampl	0	1.50m							
Š														VVIIIGO	w Campi	ici to				W	/S5	5A		
1.5																	(Centract 1	No:	2304			\dashv	ı l
<u> </u>			Orig	inator						חבויס		DE ^						†		Dest				$\mid \mid$
100	Pride	r	N	ИΜ					R(REHO			OKD					, N	Šeo.	Fig.Pa6.				
<u>-</u>	Obj. 2			atus.							cale 1							7	30	8				
	Chk & A	фр		atus nal				١	WES WES	RIVERS FRIVER	SIDE.	, BAL E, BA	LOCH	Н										
												,							4	Sh	oot 1	Lof 1	ı	

RIVERSIDE, BALLOCH

Appendix B Geotechnical Test Results

LABORATORY TEST CERTIFICATE

10 Queenslie Point Queenslie Industrial Estate 120 Stepps Road

Glasgow G33 3NQ

Tel: 0141 774 4032 Fax: 0141 774 3552

email: info@mattest.org Website: www.mattest.org

Certificate No: 17/334 - 01

To: Stephen Glover

Client : Phoenix Drilling Limited

2 Nairn Road

Deans Industrial Estate

Livingston EH54 8AY

Dear Sirs.

LABORATORY TESTING OF SOIL

Introduction

We refer to samples taken from Riverside, Balloch and delivered to our laboratory on 20th March 2017.

Material & Source

Sample Reference : See Report Plates

Sampled By : Client

Sampling Certificate : Not Supplied

Location : See Report Plates

Description : See Page 2 to Page 5

Date Sampled : Not Supplied

Date Tested : 20th March 2017 Onwards

Source : Riverside, Balloch

Test Results;

As Detailed On Page 2 to Page 34 inclusive

Comments:

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory. All remaining samples for this project will be disposed of 28 days after issue of this test certificate.

Remarks;

Approved for Issue			
	Date	20/04/2017	d
T McLelland (Director)	Date	20/04/2017	UKAS

BOREHOLE	SAMPLE	DEPTH (m)	SAMPLE DESCRIPTION
WS1	В	0.25	Brown gravelly sandy CLAY. Gravel is fine to coarse.
WS1	В	1.00	Brown clayey silty fine to coarse SAND and GRAVEL.
WS2	В	1.00	Brown very gravelly very sandy CLAY. Gravel is fine to coarse.
WS2B	В	2.00	Brown very gravelly very sandy CLAY. Gravel is fine to coarse.
WS3	В	1.00	Brown very gravelly very sandy CLAY. Gravel is fine to coarse.
WS4	В	1.00	Brown fine to coarse SAND and GRAVEL.
WS4	В	4.00	Brown gravelly very sandy CLAY. Gravel is fine to coarse.
WS5	В	1.00	Mottled brown gravelly sandy CLAY. Gravel is fine to coarse.
WS5	В	2.80	Mottled brown slightly gravelly very sandy CLAY. Gravel is fine to coarse.
WS6	В	1.00	Brown silty slightly sandy CLAY.
WS7	В	0.25	Brown fine to coarse SAND and GRAVEL.
WS8	В	1.00	Brown gravelly sandy CLAY. Gravel is fine to coarse.
WS8	U	1.20-1.65	Mottled brown gravelly very sandy CLAY. Gravel is fine to medium.
WS8	В	2.00	Mottled brown gravelly very sandy CLAY. Gravel is fine to medium.
WS9	В	1.00	Brown gravelly sandy CLAY. Gravel is fine to coarse.
WS10	В	1.00	Greyish brown slightly gravelly sandy CLAY with root fibres. Gravel is fine to medium.
WS11	В	0.25	Brown sandy CLAY.
WS11	В	2.00	Mottled brown very sandy very gravelly CLAY. Gravel is fine to coarse.
WS11	U	2.20-2.50	Brown gravelly sandy CLAY. Gravel is fine to coarse.
WS12	В	1.00	Brown fine to coarse SAND and GRAVEL.
WS13	В	0.25	Brown very gravelly very sandy CLAY. Gravel is fine to coarse.
WS13	В	1.00	Brown gravelly sandy CLAY with root fibres. Gravel is fine to coarse.
WS14	В	1.00	Brown slightly clayey fine to coarse SAND and GRAVEL.
WS15	В	1.00	Brown very gravelly sandy CLAY. Gravel is fine to coarse.

BOREHOLE	SAMPLE	DEPTH (m)	SAMPLE DESCRIPTION				
WS16	В	1.00	Dark brown PEAT (Von Post Classification - H4)				
WS16	В	2.00	Dark brown PEAT (Von Post Classification - H2)				
WS17	В	1.00	own gravelly fine to coarse SAND with cobbles. Gravel is fine to coarse.				
WS18	В	1.00	Brown fine to coarse SAND and GRAVEL.				
WS20	В	0.25	Dark brown fine to coarse SAND and GRAVEL with root fibres.				
WS21	В	1.00	Brown fine to coarse SAND and GRAVEL with root fibres.				
WS21	В	4.00	Light brown slightly gravelly very sandy silty CLAY. Gravel is fine to coarse.				
WS22	В	4.00	Light brown very clayey very silty slightly gravelly fine to coarse SAND. Gravel is fine to medium.				
WS23	В	1.00	Brown slightly gravelly fine to coarse SAND. Gravel is fine to medium.				
WS24	В	1.00	Brown fine to coarse SAND and fine to medium GRAVEL.				
WS24A	В	2.00	Brown fine to coarse SAND and fine to medium GRAVEL.				
WS25	В	1.00	Brown fine to coarse SAND and GRAVEL with root fibres.				
WS26	В	1.00	Brown fine to coarse SAND and GRAVEL.				
WS29	В	1.00	Brown fine to coarse SAND with pockets of organic matter.				
WS30	В	1.00	Brown clayey very sandy fine to coarse GRAVEL with cobbles.				
WS32	В	0.90	Dark brown / grey fine to coarse SAND and GRAVEL.				
WS35	В	1.00	Dark brown fine to coarse SAND and GRAVEL with pockets of sandy clay.				
WS36	В	0.25	Dark brown fine to coarse SAND and GRAVEL with pockets of sandy clay.				
WS36	В	2.00	Dark grey ASH FILL.				
WS37	В	1.00	Brown fine to coarse SAND and GRAVEL.				
WS37	В	2.00	Dark brown clayey silty fine to coarse SAND and GRAVEL.				
WS38	В	0.25	Grey fine to coarse SAND and GRAVEL / ASH FILL.				
WS38	В	3.00	Dark grey slightly clayey fine to coarse ASH FILL.				
WS39	В	1.00	Brown fine to coarse SAND and GRAVEL.				

BOREHOLE	SAMPLE	DEPTH (m)	SAMPLE DESCRIPTION
WS40C	В	1.00	Black fine to coarse SAND and GRAVEL / ASH FILL.
WS40C	В	5.00	Dark grey slightly gravelly silty fine to coarse SAND. Gravel is fine to medium.
WS41	В	1.00	Black fine to coarse SAND / ASH FILL.
WS41	В	3.00	Black very clayey PEAT (Von Post Classification - H2)
WS43	В	1.00	Black ASH FILL.
WS43	В	4.00	Black PEAT (Von Post Classification - H3)
WS45	В	1.00	Dark brown slightly clayey fine to coarse SAND and GRAVEL.
WS45	В	4.00	Mottled brown very gravelly very sandy CLAY with black staining. Gravel is fine to coarse.
WS45	В	5.00	Dark brown / black ver clayey PEAT (Von Post Classification - H3)
WS47	В	0.25	Dark grey fine to coarse SAND and GRAVEL / ASH FILL.
WS49	В	1.00	Dark grey very clayey fine to coarse SAND and GRAVEL / ASH FILL.
WS49	В	2.00	Dark grey very clayey fine to coarse SAND and GRAVEL / ASH FILL.
WS49	В	3.00	Black PEAT (Von Post Classification - H2)
WS50	В	0.25	Black fine to coarse SAND and GRAVEL / ASH FILL.
WS50	В	3.00	Dark grey gravelly sandy CLAY. Gravel is fine to coarse.
WS51B	В	1.00	Brown very gravelly very sandy CLAY. Gravel is fine to coarse.
WS51B	В	3.00	Brown very sandy very gravelly CLAY. Gravel is fine to coarse.
WS52	В	0.25	Brown fine to coarse SAND and GRAVEL with cobbles.
WS53	В	0.25	Dark brown very gravelly very sandy CLAY with root fibres. Gravel is fine to coarse.
WS54	В	1.00	Brown gravelly sandy CLAY. Gravel is fine to coarse.
WS54	В	3.00	Greyish brown very gravelly very sandy CLAY. Gravel is fine to coarse.
WS55	В	0.25	Dark brown gravelly very sandy CLAY. Gravel is fine to coarse.
WS56	В	0.25	Brown sandy CLAY with root fibres.
WS56	В	1.00	Light brown slightly gravelly fine to coarse SAND with root fibres. Gravel is fine to medium.

BOREHOLE	SAMPLE	DEPTH (m)	SAMPLE DESCRIPTION
WS57	B	DEPTH (m) 1.00	SAMPLE DESCRIPTION Brown slightly gravelly sandy CLAY. Gravel is fine to coarse.

BOREHOLE	SAMPLE	DEPTH (m)	MOISTURE CONTENT (%)
WS1	В	0.25	26
WS1	В	1.00	11
WS2	В	1.00	13
WS2B	В	2.00	26
WS3	В	1.00	24
WS4	В	1.00	6.8
WS4	В	4.00	21
WS5	В	1.00	30
WS6	В	1.00	25
WS8	В	1.00	16
WS8	U	1.20	11
WS8	В	2.00	12
WS9	В	1.00	13
WS10	В	1.00	30
WS11	В	0.25	30
WS11	В	2.00	15
WS12	В	1.00	9.2
WS13	В	0.25	32
WS13	В	1.00	28
WS15	В	1.00	14
WS16	В	1.00	35
WS16	В	2.00	211
WS17	В	1.00	9.9

Tested in accordance with BS 1377: Part 2: 1990: Clause 3

SUMMARY OF MOISTURE CONTENT TEST RESULTS

BOREHOLE	SAMPLE	DEPTH (m)	MOISTURE CONTENT (%)
WS18	В	1.00	6.8
WS20	В	0.25	23
WS21	В	1.00	9.0
WS22	В	4.00	9.2
WS23	В	1.00	18
WS24	В	1.00	7.0
WS24A	В	2.00	5.6
WS25	В	1.00	9.1
WS26	В	1.00	9.1
WS29	В	1.00	10
WS30	В	1.00	10
WS32	В	0.90	9.1
WS36	В	2.00	32
WS37	В	2.00	13
WS38	В	3.00	40
WS40C	В	5.00	22
WS41	В	3.00	195
WS43	В	4.00	125
WS45	В	4.00	31
WS45	В	5.00	102
WS49	В	1.00	22
WS49	В	2.00	20
WS49	В	3.00	256

Tested in accordance with BS 1377: Part 2: 1990: Clause 3

SUMMARY OF MOISTURE CONTENT TEST RESULTS

BOREHOLE	SAMPLE	DEPTH (m)	MOISTURE CONTENT (%)
WS50	В	3.00	27
WS51B	В	3.00	17
WS54	В	1.00	13
WS54	В	3.00	14
WS55	В	0.25	25
WS56	В	1.00	18

Tested in accordance with BS 1377: Part 2: 1990: Clause 3

SUMMARY OF MOISTURE CONTENT TEST RESULTS

Symbol	Borehole	Sample	Depth	Moisture Content (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	% Passing 0.425mm Sieve	Remarks
	WS2B	В	2.00	26	34	18	16	61	Clay with low plasticity
•	WS8	U	1.30	11	27	15	12	66	Clay with low plasticity
A	WS8	В	2.00	12	29	15	14	74	Clay with low plasticity
•	WS9	В	1.00	13	30	16	14	58	Clay with low plasticity
	WS11	В	2.00	15	28	16	12	42	Clay with low plasticity
\Diamond	WS13	В	1.00	28	36	16	20	91	Clay with intermediate plasticity
Δ	WS15	В	1.00	14	29	16	13	61	Clay with low plasticity
0	WS49	В	2.00	20	26	Non Plastic	Non Plastic	27	
×	WS51B	В	3.00	17	28	16	12	59	Clay with low plasticity
Ж	WS54	В	1.00	13	28	15	13	62	Clay with low plasticity

All samples were tested in accordance with BS 1377 : Part 2 : 1990 Clause 4.3, 5.3 and 5.4. All samples were washed on a $0.425 \, \text{mm}$ test sieve prior to test.

SUMMARY OF ATTERBERG LIMITS TEST RESULTS

Symbol	Borehole	Sample	Depth	Moisture Content (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	% Passing 0.425mm Sieve	Remarks
	WS45	В	5.00	102	133	56	77	-	Unable to plot on chart due to material type
•									
A									
•									
\Q									
Δ									
0									
×									
Ж									

All samples were tested in accordance with BS 1377 : Part 2 : 1990 Clause 4.3, 5.3 and 5.4. All samples were tested in their natural state.

SUMMARY OF ATTERBERG LIMITS TEST RESULTS

Borehole	WS1
Sample	В
Depth (m)	1.00

				•				
	SIEVING					EDIMENT	ATION	
	Percentage Passing	Specification		Particle Size (mm)				
Sieve Size (mm)	(%)	Not Applicable				n) F	Percentage	Passing (%)
	(70)	Lower %	Upper %					
500.0	100	-	-		0.020		1	4
300.0	100	-	-		0.006		1	1
125.0	100	-	-		0.002		3	3
90.0	100	-	-					
75.0	100	-	-	GRAI	DING CLA	SSIFICATI	ON (SHW	TABLE 6/2)
63.0	100	-	-					
50.0	100	-	-					
37.5	100	-	-	Grading classification proves the material has met the relevant grad				
28.0	91	-	-	requirements only. Further testing may be required to assess compliance with SHW.				assess
20.0	77	-	-					
14.0	71	-	-					
10.0	66	-	-		PERC	ENTAGE :	SOIL TYPE	S
6.30	59	-	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES
5.00	55	-	-	CLAT	SILI T	SAND	GRAVEL	COBBLES
3.35	52	-	-	8	9	30	53	0
2.00	47	-	-					
1.18	43	-	-	UNIFORMITY COEFFICIENT (SHW TABLE 6/1 N			_E 6/1 NOTE 5)	
0.600	38	-	-					
0.425	36	-	-	D10		"	טסי	Specification
0.300	33	-	-	-			-	
0.212	30	-	-	UNIFORMITY COEFFICIENT -		-		
0.150	25	-	-					
0.063	17	-	-					
	•			_				

Remarks

Borehole	WS3
Sample	В
Depth (m)	1.00

				•				
	SIEVING				S	EDIMENT	ATION	
	Percentage Passing	Specifi						
Sieve Size (mm)	(%)	Not Applicable		Particle Size (mm)		n) F	Percentage	Passing (%)
	(70)	Lower %	Upper %	,]				
500.0	100	•	-		0.020		1	6
300.0	100	-	-		0.006		1	3
125.0	100	-	-		0.002		1	0
90.0	100	-	-					
75.0	100	-	-	GRAI	DING CLA	SSIFICATI	ON (SHW '	TABLE 6/2)
63.0	100	-	-					
50.0	100	-	-	- ·				
37.5	100	-	-	Grading classification proves the material has met the relevant grading				
28.0	96	-	-	requirements only. Further testing may be required to assess				
20.0	88	-	-	compliance with SHW.				
14.0	84	-	-					
10.0	81	-	-		PERC	ENTAGE S	SOIL TYPE	S
6.30	77	-	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES
5.00	76	-	-	CLAT	SILI T	SAND	GRAVEL	COBBLES
3.35	74	-	-	10	10	49	31	0
2.00	69	-	-					
1.18	64	-	-	UNIFORMITY COEFFICIENT (SHW TABLE 6/1 NO			E 6/1 NOTE 5)	
0.600	59	-	-	D10 D60				
0.425	55	-	-	טוט		"	OU	Specification
0.300	50	•	-	-			-	
0.212	44	-	-	UNIFORMITY COEFFICIENT -		-		
0.150	35	-	-					
0.063	20	-	-					

Remarks

Borehole	WS4
Sample	В
Depth (m)	4.00

SIEVING					S	EDIMENT	ATION	
	Percentage Passing	•	ication	Particle Size (mm)				
Sieve Size (mm)	(%)		plicable			ו) F	Percentage	Passing (%)
	(70)	Lower %	Upper %					
500.0	100	-	-		0.020			8
300.0	100	-	-		0.006		2	9
125.0	100	-	-		0.002		2	.4
90.0	100	•	-					
75.0	100	-	-	GRAD	DING CLAS	SSIFICATI	ON (SHW '	TABLE 6/2)
63.0	100	-	-					
50.0	100	-	-					
37.5	100	-	-					e relevant grading
28.0	99	-	-	requirements only. Further testing may be required to assess				assess
20.0	99	-	-	compliance with SHW.				
14.0	98	-	-					
10.0	97	-	-		PERC	ENTAGE S	SOIL TYPE	S
6.30	95	-	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES
5.00	94	-	-	CLAT	SILI T	SAND	GRAVEL	COBBLES
3.35	91	-	-	24	31	31	14	0
2.00	86	-	-		-		-	
1.18	81	-	-	UNIFORMITY COEFFICIENT (SHW TABLE 6/1 N			_E 6/1 NOTE 5)	
0.600	72	-	-	D40			<u></u>	
0.425	67	-	-	D10		٥ ا	60	Specification
0.300	63	-	-	-			-	-
0.212	61	-	-	UNIFORMITY COEFFICIENT		-	-	
0.150	59	-	-					
0.063	55	-	_					

Remarks

Borehole	WS5
Sample	В
Depth (m)	2.80

SIEVING					SEDIMENTATION				
	Sieving Specification						ATION		
Ciava Ciza (mm)	Percentage Passing			Particle Size (n		n) Doroontos		o Dogging (%)	
Sieve Size (mm)	(%)		plicable		e Size (IIIII	1) [Percentage	Passing (%)	
500.0			Upper %		0.000		2	0	
500.0	100	-	-		0.020			6	
300.0	100	-	-		0.006		3		
125.0	100	•	-		0.002		2	4	
90.0	100	-	-						
75.0	100	•	-	GRAD	DING CLAS	SSIFICATI	ON (SHW	ΓABLE 6/2)	
63.0	100	•	-			_			
50.0	100	ı	-	·					
37.5	100	-	-	Grading classification proves the material has met the relevant gradi					
28.0	100	-	-	requirements only. Further testing may be required to assess compliance with SHW.				assess	
20.0	99		-						
14.0	99	•	-						
10.0	97	-	-		PERC	ENTAGE S	SOIL TYPE	S	
6.30	95		-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES	
5.00	94	•	-	CLAI	SILI T	SAND	GRAVEL	COBBLES	
3.35	92	-	-	24	19	48	9	0	
2.00	91	-	-						
1.18	89	-	-	UNIFORMITY COEFFICIENT (SHW TABLE 6/1 NO			E 6/1 NOTE 5)		
0.600	85	-	-	,		60			
0.425	83	•	-	- D10 D60		00	Specification		
0.300	80	-	-	-			-		
0.212	75	•	-	UNIFORMITY COEFFICIENT		•			
0.150	68	-	-		•	•		_	
0.063	43	-	-						

Remarks

Borehole	WS9
Sample	В
Depth (m)	1.00

	SIEVING					EDIMENT	ATION	
	Percentage Passing	Specif						
Sieve Size (mm)	(%)	Not Applicable		Particle Size (mm)		n) F	Percentage	Passing (%)
	(70)	Lower %	Upper %					
500.0	100	-	-		0.020		3	4
300.0	100	-	-		0.006			4
125.0	100	•	-		0.002		1	8
90.0	100	•	-					
75.0	100	-	-	GRAI	DING CLA	SSIFICATI	ON (SHW :	TABLE 6/2)
63.0	100	-	-					
50.0	90	-	-	7				
37.5	90	-	-	Grading classification proves the material has met the relevant grading				
28.0	86	-	-	requirements only. Further testing may be required to assess compliance with SHW.				
20.0	82	-	-					
14.0	78	-	-					
10.0	76	-	-		PERC	ENTAGE S	SOIL TYPE	S
6.30	72	-	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES
5.00	70	-	-	CLAT	SILI +	SAND	GRAVEL	COBBLES
3.35	68	-	-	18	25	22	35	0
2.00	65	-	-		-			
1.18	63	-	-	UNIFORMITY COEFFICIENT (SHW TABLE 6/1 NO			E 6/1 NOTE 5)	
0.600	60	-	-	i i		-		
0.425	58	-	-	- D10 D		טס	Specification	
0.300	56	-	-	-			-	-
0.212	53	-	-	UNIFORMITY COEFFICIENT -		-		
0.150	49	-	-					
0.063	43	-	-	1				

Remarks

Ŧ Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns Sample does not meet minimum mass requirement for material type

Borehole	WS11
Sample	В
Depth (m)	2.00

	SIEVING			SEDIMENTATION				
	Porcentage Possing Specification		ication					
Sieve Size (mm)	Percentage Passing	Not Ap	plicable	Particl	Particle Size (mm)		Percentage	Passing (%)
	(%)	Lower %	Upper %	1				
500.0	100	-	-		0.020		1	7
300.0	100	-	-		0.006		1	4
125.0	100	-	-		0.002		1	1
90.0	100	-	-			•		
75.0	100	-	-	GRAI	DING CLA	SSIFICATI	ON (SHW	TABLE 6/2)
63.0	100	-	-					
50.0	100	-	-	¬ -				
37.5	85	-	-	Grading classification proves the material has met the relevant grad				
28.0	73	-	-	requirements only. Further testing may be required to assess				
20.0	66	-	-	compliance with SHW.				
14.0	63	•	-					
10.0	60	•	-		PERC	ENTAGE S	SOIL TYPE	S
6.30	56	•	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES
5.00	55	•	-	CLAI	SILI T	SAND	GRAVEL	COBBLES
3.35	52	•	-	11	10	28	51	0
2.00	49	•	-					
1.18	47	•	-	UNIFORM	IITY COEF	FICIENT (SHW TABI	LE 6/1 NOTE 5
0.600	44	•	-	- D10 D60		60		
0.425	42	-	-				Sp Sp	
0.300	39	-	-		-		-	
0.212	35	-	-	UNIFORM	IITY COEF	FICIENT	-	-
0.150	30	-	-					
0.063	21	-	-					

Remarks

T Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns Sample does not meet minimum mass requirement for material type

Borehole	WS13
Sample	В
Depth (m)	0.25

SIEVING					S	EDIMENT	ATION	
	Percentage Passing	•	ication	le Particle Size (mm)				
Sieve Size (mm)	(%)		plicable			ו) F	Percentage	Passing (%)
		Lower %	Upper %					
500.0	100	-	-		0.020			9
300.0	100	-	-		0.006			2
125.0	100	-	-		0.002		1	7
90.0	100	•	-					
75.0	100	-	-	GRAD	DING CLAS	SSIFICATI	ON (SHW '	TABLE 6/2)
63.0	100	-	-					
50.0	100	-	-					
37.5	100	-	-	Grading classification proves the material has met the relevant grading				
28.0	98	-	-	requirements only. Further testing may be required to assess compliance with SHW.				
20.0	95	-	-					
14.0	90	-	-					
10.0	86	-	-		PERC	ENTAGE S	SOIL TYPE	S
6.30	80	-	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES
5.00	77	-	-	CLAT	SILI +	SAND	GRAVEL	COBBLES
3.35	74	-	-	17	20	34	29	0
2.00	71	-	-		•			
1.18	67	-	-	UNIFORMITY COEFFICIENT (SHW TABLE 6/1 NO				_E 6/1 NOTE 5)
0.600	62	-	-	D10 D60				
0.425	59	-	-	D10		ں	ου	Specification
0.300	55	-	-			-		
0.212	51	-	-	UNIFORM	IITY COEF	FICIENT	-	-
0.150	45	-	-					
0.063	37	-	-					

Remarks

Borehole	WS15
Sample	В
Depth (m)	1.00

CIEVINO						EDIMENT	ATION	
	SIEVING					EDIMENT	ATION	
	Percentage Passing		Specification		. ,	, _	_	
Sieve Size (mm)	(%)	Not Applicable		-1	e Size (mn	n) F	Percentage	Passing (%)
	(70)	Lower %	Upper %					
500.0	100	•	-		0.020		3	7
300.0	100	•	-		0.006		3	1
125.0	100	-	-		0.002		2	3
90.0	100	-	-					
75.0	100	-	-	GRAI	DING CLA	SSIFICATI	ON (SHW	TABLE 6/2)
63.0	100	-	-					
50.0	92	-	-	⁻				
37.5	92	-	-	Grading classification proves the material has met the relevant gradin				
28.0	85	-	-	requirements only. Further testing may be required to assess compliance with SHW.				
20.0	83	•	-					
14.0	78	-	-					
10.0	76	-	-		PERC	ENTAGE S	SOIL TYPE	S
6.30	73	-	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES
5.00	72	-	-	CLAT	SILI T	SAND	GRAVEL	COBBLES
3.35	70	-	-	23	23	22	32	0
2.00	68	-	-		-	-		
1.18	66	-	-	UNIFORMITY COEFFICIENT (SHW TABLE 6/1 NO				E 6/1 NOTE 5)
0.600	63	-	-	D10 D60				
0.425	61	-	-	- D10 D60		760	Specification	
0.300	58	•	-					
0.212	55	-	-	UNIFORM	IITY COEF	FICIENT	-	-
0.150	51	•	-					
0.063	46	-	-					

Remarks

Ŧ Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns Sample does not meet minimum mass requirement for material type

Borehole	WS17
Sample	В
Depth (m)	1.00

SIEVING					S	EDIMENT	ATION	
	Percentage Passing	Specif	ication					
Sieve Size (mm)	(%)	Not Applicable		Particle Size (mm)		n) F	Percentage	Passing (%)
	(70)	Lower %	Upper %					
500.0	100	•	-		0.020			
300.0	100	•	-		0.006			
125.0	100	-	-		0.002			
90.0	100	-	-					
75.0	86	-	-	GRAI	DING CLA	SSIFICATI	ON (SHW '	TABLE 6/2)
63.0	86	-	-					
50.0	86	-	-			-		
37.5	81	-	-	Grading classification proves the material has met the relevant gradi				
28.0	75	-	-	requirements only. Further testing may be required to assess				assess
20.0	74	-	-	compliance v	with SHVV.			
14.0	73	-	-					
10.0	73	-	-		PERC	ENTAGE S	SOIL TYPE	S
6.30	72	-	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES
5.00	72	-	-	CLAT	SILI T	SAND	GRAVEL	COBBLES
3.35	71	-	-	1	5	65	16	14
2.00	70	-	-					
1.18	69	-	-	UNIFORM	IITY COEF	FICIENT (SHW TABI	LE 6/1 NOTE 5)
0.600	62	-	-	D10 D60				
0.425	46	-	-	טוט			00	Specification
0.300	21	-	-					
0.212	11	-	-	UNIFORM	IITY COEF	FICIENT	-	-
0.150	8	-	-					
0.063	5	-	-					

Remarks

Ŧ Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns Sample does not meet minimum mass requirement for material type

Borehole	WS21
Sample	В
Depth (m)	4.00

	SIEVING				SEDIMENTATION			
	Percentage Passing	Specif	ication					
Sieve Size (mm)	mm) i		Not Applicable		Particle Size (mm)		Percentage Passing (%)	
	(%)	Lower %	Upper %					
500.0	100	•	-		0.020		3	0
300.0	100	•	-		0.006		2	6
125.0	100	•	-		0.002		1	9
90.0	100	•	-					
75.0	100	•	-	GRAI	DING CLAS	SSIFICATI	ON (SHW	TABLE 6/2)
63.0	100	•	-					
50.0	100	-	-	7				
37.5	100	•	•	Grading classification proves the material has met the relevant grading				
28.0	99	•	•	requirements only. Further testing may be required to assess compliance with SHW.				
20.0	99	•	•					
14.0	99	•	•					
10.0	97	•	•		PERC	ENTAGE S	SOIL TYPE	S
6.30	96	•	•	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES
5.00	95	•	•	CLAI	SIL1 T	SAND	GRAVEL	COBBLES
3.35	95	•	-	19	18	57	6	0
2.00	94	•	•					
1.18	93	-	-	UNIFORMITY COEFFICIENT (SHW TABLE 6/1 NO				E 6/1 NOTE 5)
0.600	92	-	-	D10 D60 Sp				
0.425	91	-	-			Specification		
0.300	86	-	-					
0.212	74	-	-	UNIFORM	ITY COEF	FICIENT	-	-
0.150	58	-	-			•		
0.063	37	-	-	1				

Remarks

Borehole	WS22
Sample	В
Depth (m)	4.00

SIEVING					S	EDIMENT	ATION	
	Percentage Passing	Specif						
Sieve Size (mm)	(%)		plicable		e Size (mn	ገ) F	ercentage	Passing (%)
		Lower %	Upper %					
500.0	100	-	-		0.020			20
300.0	100	-	-		0.006		1	6
125.0	100	-	-		0.002		1	2
90.0	100	-	-					
75.0	100	-	_	GRAI	DING CLAS	SSIFICATI	ON (SHW '	TABLE 6/2)
63.0	100	-	-					
50.0	100	-	-					
37.5	100	-	-	Grading classification proves the material has met the relevant grading				
28.0	100	-	-	requirements only. Further testing may be required to assess compliance with SHW.				
20.0	100	-	-					
14.0	99	-	-					
10.0	99	-	-		PERC	ENTAGE S	SOIL TYPE	S
6.30	98	-	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES
5.00	98	-	-	CLAT	SILI T	SAND	GRAVEL	COBBLES
3.35	97	-	-	12	12	73	3	0
2.00	97	-	-					
1.18	96	-	-	UNIFORMITY COEFFICIENT (SHW TABLE 6/1 NC				LE 6/1 NOTE 5)
0.600	93	-	-	D10 D60				
0.425	91	-	-	D10		ן	6 0	Specification
0.300	88	-	-					
0.212	83	-	-	UNIFORM	IITY COEF	FICIENT	-	-
0.150	62	-	-					
0.063	24	-	-					

Remarks

Borehole	WS23
Sample	В
Depth (m)	1.00

SIEVING					S	EDIMENT	ATION	
	Percentage Passing	Specif	ication					
Sieve Size (mm)	(%)	Not Ap	plicable	Particle Size (mm)		n) F	Percentage	Passing (%)
	(70)	Lower %	Upper %					
500.0	100	-	-		0.020			
300.0	100	-	-		0.006			
125.0	100	-	-		0.002			
90.0	100	-	-					
75.0	100	-	-	GRAI	DING CLAS	SSIFICATI	ON (SHW	TABLE 6/2)
63.0	100	-	-					
50.0	100	-	-			-		
37.5	100	-	-					e relevant grading
28.0	100	-	-	requirements only. Further testing may be required to assess compliance with SHW.				assess
20.0	100	-	-					
14.0	100	-	-					
10.0	99	-	-		PERC	ENTAGE S	SOIL TYPE	S
6.30	99	-	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES
5.00	99	-	-	CLAI	SILI T	SAND	GRAVEL	COBBLES
3.35	98	-	-	1	5	90	5	0
2.00	95	-	-					
1.18	86	-	-	UNIFORM	IITY COEF	FICIENT (SHW TABI	E 6/1 NOTE 5)
0.600	61	-	-	D10 D60		60		
0.425	51	-	-			U	00	Specification
0.300	42	-	-	-		-		
0.212	32	-	-	UNIFORM	IITY COEF	FICIENT	-	-
0.150	21	-	-					
0.063	5	-	-					

Remarks

Borehole	WS30
Sample	В
Depth (m)	1.00

SIEVING					S	EDIMENT	ATION	
	Percentage Passing	Specif						
Sieve Size (mm)	(%)	Not Applicable		Particle Size (mm)		n) F	Percentage	Passing (%)
	(70)	Lower %	Upper %					
500.0	100	-	-		0.020			
300.0	100	-	-		0.006			
125.0	100	•	-		0.002			
90.0	100	•	-					
75.0	100	•	-	GRAI	DING CLAS	SSIFICATI	ON (SHW	TABLE 6/2)
63.0	84	•	-					
50.0	80	•	-			-		
37.5	76	•	-					e relevant grading
28.0	72	•	-	requirements only. Further testing may be required to assess compliance with SHW.				
20.0	67	•	-					
14.0	61	-	-					
10.0	56	-	-		PERC	ENTAGE S	SOIL TYPE	S
6.30	46	-	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES
5.00	41	•	-	CLAI	SILI T	SAND	GRAVEL	COBBLES
3.35	33	•	-	1	9	17	58	16
2.00	26	•	-					
1.18	22	•	-	UNIFORM	IITY COEF	FICIENT (SHW TABI	LE 6/1 NOTE 5)
0.600	17	•	-	D10 D60				
0.425	16	-	-	ן טויט		U	80	Specification
0.300	14	•	-			-		
0.212	13	•	-	UNIFORM	ITY COEF	FICIENT	-	-
0.150	11	•	-					
0.063	9	-	-					

Remarks

Ŧ Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns Sample does not meet minimum mass requirement for material type

Borehole	WS37
Sample	В
Depth (m)	2.00

SIEVING					S	SEDIMENT	ATION	
Sieve Size (mm)	Percentage Passing (%)	Not Ap	ication plicable	Particle Size (mm)		n) F	Percentage	Passing (%)
	(70)	Lower %	Upper %					
500.0	100	•	-		0.020			9
300.0	100	•	-		0.006			5
125.0	100	•	-		0.002		(3
90.0	100	•	-					
75.0	100	-	-	GRAI	DING CLA	SSIFICATI	ON (SHW	TABLE 6/2)
63.0	100	-	-					
50.0	100	-	-					
37.5	100	-	-	Grading classification proves the material has met the relevant grad				
28.0	100	-	-	requirements only. Further testing may be required to assess compliance with SHW.				
20.0	90	-	-					
14.0	82	-	-					
10.0	72	-	-		PERC	ENTAGE S	SOIL TYPE	S
6.30	59	-	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES
5.00	55	-	-	CLAT	SILI +	SAND	GRAVEL	COBBLES
3.35	49	-	-	3	9	30	58	0
2.00	42	-	-			-		
1.18	36	-	-	UNIFORM	IITY COEF	FICIENT (SHW TABI	E 6/1 NOTE 5)
0.600	30	-	-	D10 D60 Spe		-		
0.425	27	-	-			"	60	Specification
0.300	24	-	-					
0.212	21	-	-	UNIFORM	ITY COEF	FICIENT	-	-
0.150	18	-	-					
0.063	12	•	_					

Remarks

T Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns Sample does not meet minimum mass requirement for material type

Borehole	WS38
Sample	В
Depth (m)	3.00

	SIEVING				S	SEDIMENT	ATION	
	Percentage Passing	Specif						
Sieve Size (mm)	(%)	Not Ap	plicable			n) F	Percentage	Passing (%)
	(70)	Lower %	Upper %					
500.0	100	•	-		0.020		1	7
300.0	100	•	-		0.006		1	4
125.0	100	-	-		0.002		1	1
90.0	100	-	-					
75.0	100	-	-	GRAI	DING CLA	SSIFICATI	ON (SHW	TABLE 6/2)
63.0	100	-	-					
50.0	100	-	-			-		
37.5	100	-	-	Grading classification proves the material has met the relevant gradin				
28.0	96	-	-	requirements only. Further testing may be required to assess				
20.0	92	-	-	compliance with SHW.				
14.0	84	-	-					
10.0	76	-	-		PERC	ENTAGE S	SOIL TYPE	S
6.30	64	-	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES
5.00	59	-	-	CLAT	SILI +	SAND	GRAVEL	COBBLES
3.35	54	-	-	11	9	29	51	0
2.00	49	-	-		-	-		
1.18	44	-	-	UNIFORMITY COEFFICIENT (SHW TABLE 6/1 NO				_E 6/1 NOTE 5)
0.600	38	-	-	, i				
0.425	34	-	-	- D10 D6		טסי	Specification	
0.300	31	-	-				-	
0.212	28	-	-	UNIFORM	IITY COEF	FICIENT	-	-
0.150	25	-	-					
0.063	20	-	-	1				

Remarks

Borehole	WS40C
Sample	В
Depth (m)	5.00

SIEVING					S	EDIMENT	ATION	
	Percentage Passing	Specif		Particle Size (mm)				
Sieve Size (mm)	(%)		plicable			n) F	Percentage	Passing (%)
	(70)	Lower %	Upper %					
500.0	100	•	-		0.020			
300.0	100	•	-		0.006			
125.0	100	•	-		0.002			
90.0	100	-	-					
75.0	100	-	-	GRAI	DING CLA	SSIFICATI	ON (SHW	TABLE 6/2)
63.0	100	-	-					
50.0	100	-	-			-		
37.5	100	-	-					e relevant grading
28.0	100	-	-	requirements only. Further testing may be required to assess compliance with SHW.				
20.0	100	-	-					
14.0	100	-	-					
10.0	100	-	-		PERC	ENTAGE S	SOIL TYPE	S
6.30	99	-	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES
5.00	98	-	-	CLAT	SILI T	SAND	GRAVEL	COBBLES
3.35	98	-	-	1	9	86	5	0
2.00	95	-	-					
1.18	85	-	-	UNIFORM	IITY COEF	FICIENT (SHW TABI	E 6/1 NOTE 5)
0.600	63	-	-	D10 D60 S				
0.425	54	-	-			U	00	Specification
0.300	43	-	-			-		
0.212	31	-	-	UNIFORM	ITY COEF	FICIENT	-	-
0.150	18	-	-					
0.063	9	-	-					

Remarks

Borehole	WS45
Sample	В
Depth (m)	4.00

SIEVING					S	EDIMENT	ATION	
Sieve Size (mm)	Percentage Passing	Specif	ication plicable	Particle Size (mm)		2) [Percentage	Passing (%)
Oleve Olze (IIIII)	(%)		Upper %		e oize (iiii	'' '	crocinage	r assing (70)
500.0	100	-	-		0.020		1	9
300.0	100	-	-		0.006		1	6
125.0	100	-	-		0.002		1	3
90.0	100	-	-			•		
75.0	100	-	-	GRAD	DING CLA	SSIFICATI	ON (SHW	TABLE 6/2)
63.0	100	-	-					
50.0	91	•	-	¬ -				
37.5	87	-	-	Grading classification proves the material has met the relevant grad				
28.0	81	•	-	requirements only. Further testing may be required to assess compliance with SHW.				
20.0	80	•	-					
14.0	76	•	-					
10.0	73	-	-		PERC	ENTAGE S	SOIL TYPE	S
6.30	68	•	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES
5.00	65	•	-	CLAI	SILI T	SAND	GRAVEL	COBBLES
3.35	61	•	-	13	10	32	45	0
2.00	55	•	-					
1.18	49	•	-	UNIFORMITY COEFFICIENT (SHW TABLE 6/1 NO				LE 6/1 NOTE 5)
0.600	43	-	-	D10 D60 Spe				
0.425	41	-	-					Specification
0.300	37	-	-	<u> </u>				
0.212	34	-	-	UNIFORM	ITY COEF	FICIENT	-	-
0.150	30	-	-					
0.063	23	-	-					

Remarks

Ŧ Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns Sample does not meet minimum mass requirement for material type

Borehole	WS51B
Sample	В
Depth (m)	3.00

SIEVING				SEDIMENTATION				
Sieve Size (mm)	Percentage Passing (%)	Specification						
		Not Applicable		Particle Size (mm		n) Percentage Pa		assing (%)
		Lower %	Upper %					
500.0	100	-	-	0.020			29	
300.0	100	-	-	0.006 21			1	
125.0	100	•	-	0.002 16				
90.0	100	-	-					
75.0	100	-	-	GRADING CLASSIFICATION (SHW TABLE 6/2)				
63.0	100	•	-					
50.0	100	-	-			-		
37.5	93	-	-	Grading classification proves the material has met the relevant grading requirements only. Further testing may be required to assess compliance with SHW.				
28.0	91	-	-					
20.0	82	•	-					
14.0	79	-	-					
10.0	76	•	-	PERCENTAGE SOIL TYPES				
6.30	72	•	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES
5.00	70	•	-	CLAI	SILI T	SAND	GIVAVEL	COBBLES
3.35	68	-	-	16	22	28	34	0
2.00	66	-	-					
1.18	63	•	-	UNIFORMITY COEFFICIENT (SHW TABLE 6/1 NOTE 5)				
0.600	61	•	-	D10		D60		Specification
0.425	59	-	-					
0.300	57	-	-	-			-	
0.212	54	-	-	UNIFORMITY COEFFICIENT			-	
0.150	49	-	-					
0.063	38	-	-					

Remarks

Borehole	WS54
Sample	В
Depth (m)	3.00

		S	EDIMENT	ATION				
	Percentage Passing	Specif	ication					
Sieve Size (mm)		Not Ap	plicable	Particl	Particle Size (mm)		Percentage	Passing (%)
	(%)	Lower %	Upper %					
500.0	100	-	-		0.020		2	1
300.0	100	-	-		0.006		1	6
125.0	100	-	-		0.002		1	2
90.0	100	-	-					
75.0	100	-	-	GRAI	DING CLA	SSIFICATI	ON (SHW	TABLE 6/2)
63.0	100	-	-					
50.0	100	-	-			-		
37.5	95	-	-					e relevant grading
28.0	92	-	-	requirements only. Further testing may be required to assess				assess
20.0	90	-	-	compliance v	vith SHW.			
14.0	85	-	-					
10.0	78	-	-		PERC	ENTAGE S	SOIL TYPE	S
6.30	73	-	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES
5.00	70	-	-	CLAT	SILI T	SAND	GRAVEL	COBBLES
3.35	68	-	-	12	12	40	36	0
2.00	64	-	-					
1.18	60	-	-	UNIFORM	IITY COEF	FICIENT (SHW TABI	E 6/1 NOTE 5)
0.600	53	-	-	D10 D60				
0.425	49	-	-			00	Specification	
0.300	42	-	-		-		-	
0.212	36	-	-	UNIFORM	ITY COEF	FICIENT	-	-
0.150	30	-	-					
0.063	24	-	-					

Remarks

Ŧ Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

—— Undisturbed sample, taken directly from the sample tube and retaining axial orientation

Failure Conditions						
Cell pressure	(kPa)	25				
Membrane correction	(kPa)	0.2				
Strain at failure	(%)	3.5				
Failure Type		Intermediate				
Corrected deviator stress	(kPa)	225				
Undrained shear strength	(kPa)	113				

Initial Conditions						WS8
Sample length	169.09 mm	Rate of strain	2.0	%/min	Borehole	VV36
Sample diameter	82.53 mm	Bulk Density	2.25	Mg/m ³	Sample	U
Membrane type	Latex	Dry Density	2.02	Mg/m ³	Depth (m)	1.40
Membrane thickness	0.2 mm	Moisture Content	12	%	Deptil (III)	1.40

DETERMINATION OF UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION

Tested in accordance with BS 1377: Part 7:8.0:1990

—— Undisturbed sample, taken directly from the sample tube and retaining axial orientation

Failure Conditions						
Cell pressure	(kPa)	50				
Membrane correction	(kPa)	1.0				
Strain at failure	(%)	20.0				
Failure Type		Intermediate				
Corrected deviator stress	(kPa)	115				
Undrained shear strength	(kPa)	57				

	Borehole	WS11				
Sample length	140.62 mm	Rate of strain	2.0	%/min	Dolellole	VVOII
Sample diameter	71.49 mm	Bulk Density	2.32	Mg/m ³	Sample	U
Membrane type	Latex	Dry Density	2.07	Mg/m ³	Depth (m)	2.20
Membrane thickness	0.2 mm	Moisture Content	12	%	Deptil (III)	2.20

DETERMINATION OF UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION

Tested in accordance with BS 1377: Part 7:8.0:1990

BOREHOLE	SAMPLE	DEPTH (m)	SPECIMEN § ORIENTATION	PREPARATION METHOD *	BS TEST METHODS *	SAMPLE PASSING 2mm SIEVE (%)	TOTAL SULPHATE (% SO3)	2:1 WATER SOLUBLE SULPHATE (g/I SO3)	pH VALUE
WS1	В	0.25	N/A	5.3 / 9.4	5.5 / 9.5	87	-	0.01	5.8
WS2	В	1.00	N/A	5.3 / 9.4	5.5 / 9.5	60	-	0.01	7.3
WS3	В	1.00	N/A	5.3 / 9.4	5.5 / 9.5	69	-	0.01	5.7
WS4	В	1.00	N/A	5.3 / 9.4	5.5 / 9.5	31	-	0.01	6.2
WS5	В	1.00	N/A	5.3 / 9.4	5.5 / 9.5	75	-	<0.01	6.4
WS6	В	1.00	N/A	5.3 / 9.4	5.5 / 9.5	97	-	0.01	6.0
WS7	В	0.25	N/A	5.3 / 9.4	5.5 / 9.5	31	-	<0.01	6.6
WS8	В	1.00	N/A	5.3 / 9.4	5.5 / 9.5	76	-	<0.01	8.0
WS10	В	1.00	N/A	5.3 / 9.4	5.5 / 9.5	85	-	<0.01	6.7
WS13	В	0.25	N/A	5.3 / 9.4	5.5 / 9.5	71	-	0.01	5.6
WS14	В	1.00	N/A	5.3 / 9.4	5.5 / 9.5	44	-	<0.01	6.3
WS15	В	1.00	N/A	5.3 / 9.4	5.5 / 9.5	68	-	0.01	6.3
WS16	В	1.00	N/A	5.3 / 9.4	5.5 / 9.5	57	-	0.04	6.8
WS20	В	0.25	N/A	5.3 / 9.4	5.5 / 9.5	65	-	<0.01	5.2
WS21	В	1.00	N/A	5.3 / 9.4	5.5 / 9.5	62	-	<0.01	6.7
WS23	В	1.00	N/A	5.3 / 9.4	5.5 / 9.5	95	-	<0.01	5.8
WS24	В	1.00	N/A	5.3 / 9.4	5.5 / 9.5	39	-	<0.01	6.0

All tests performed on fraction of sample passing 2mm sieve NOTE: To convert sulphate results from ${\rm SO_3}$ to ${\rm SO_4}$ multiply by 1.2

§ Spec	Specimen orientation :					
N/A	N/A Not applicable due to preparation method and/or sample type					
V	Cut vertically from undisturbed sample					
Н	Cut horizontally from undisturbed sample					

* Tested in accordance with the following clauses								
of BS 137	of BS 1377: Part 3: 1990:							
5.2	Acid extract method 9.4 Preparation of pH test specimen							
5.3	5.3 Water extract method 9.5 Determination of the pH value							
5.5	· · · · · · · · · · · · · · · · · · ·							

SUMMARY OF SULPHATE & pH TEST RESULTS

BOREHOLE	SAMPLE	DEPTH (m)	SPECIMEN § ORIENTATION	PREPARATION METHOD *	BS TEST METHODS *	SAMPLE PASSING 2mm SIEVE (%)	TOTAL SULPHATE (% SO3)	2:1 WATER SOLUBLE SULPHATE (g/l SO3)	pH VALUE
WS25	В	1.00	N/A	5.3 / 9.4	5.5 / 9.5	20	-	<0.01	6.7
WS29	В	1.00	N/A	5.3 / 9.4	5.5 / 9.5	96	-	0.01	6.2
WS32	В	0.90	N/A	5.3 / 9.4	5.5 / 9.5	58	-	0.01	8.0
WS35	В	1.00	N/A	5.3 / 9.4	5.5 / 9.5	75	-	0.09	7.8
WS36	В	0.25	N/A	5.3 / 9.4	5.5 / 9.5	44	-	0.02	6.6
WS37	В	1.00	N/A	5.3 / 9.4	5.5 / 9.5	44	-	0.02	6.6
WS38	В	0.25	N/A	5.3 / 9.4	5.5 / 9.5	34	-	0.01	6.5
WS39	В	1.00	N/A	5.3 / 9.4	5.5 / 9.5	14	-	<0.01	6.6
WS40C	В	1.00	N/A	5.3 / 9.4	5.5 / 9.5	43	-	0.01	6.7
WS41	В	1.00	N/A	5.3 / 9.4	5.5 / 9.5	50	-	<0.01	6.5
WS43	В	1.00	N/A	5.3 / 9.4	5.5 / 9.5	31	-	0.02	6.6
WS45	В	1.00	N/A	5.3 / 9.4	5.5 / 9.5	33	-	0.01	7.0
WS47	В	0.25	N/A	5.3 / 9.4	5.5 / 9.5	38	-	<0.01	6.6
WS49	В	1.00	N/A	5.3 / 9.4	5.5 / 9.5	55	-	0.02	6.5
WS50	В	0.25	N/A	5.3 / 9.4	5.5 / 9.5	50	-	0.04	6.6
WS51B	В	1.00	N/A	5.3 / 9.4	5.5 / 9.5	54	-	0.01	7.1
WS52	В	0.25	N/A	5.3 / 9.4	5.5 / 9.5	75	-	<0.01	6.5

All tests performed on fraction of sample passing 2mm sieve NOTE: To convert sulphate results from ${\rm SO_3}$ to ${\rm SO_4}$ multiply by 1.2

§ Specime	Specimen orientation :						
N/A	N/A Not applicable due to preparation method and/or sample type						
V	Cut vertically from undisturbed sample						
Н	Cut horizontally from undisturbed sample						

	* Tested in accordance with the following clauses							
OT BS 137	of BS 1377: Part 3: 1990:							
5.2	Acid extract method 9.4 Preparation of pH test specimen							
5.3	3.3 Water extract method 9.5 Determination of the pH value							
5.5	Gravimetric method of analysis							

SUMMARY OF SULPHATE & pH TEST RESULTS

BOREHOLE	SAMPLE	DEPTH (m)	SPECIMEN § ORIENTATION	PREPARATION METHOD *	BS TEST METHODS *	SAMPLE PASSING 2mm SIEVE (%)	TOTAL SULPHATE (% SO3)	2:1 WATER SOLUBLE SULPHATE (g/I SO3)	рН
WS53	В	0.25	N/A	5.3 / 9.4	5.5 / 9.5	42	-	0.01	7.4
WS55	В	0.25	N/A	5.3 / 9.4	5.5 / 9.5	78	-	0.04	6.6
WS56	В	0.25	N/A	5.3 / 9.4	5.5 / 9.5	99	-	0.03	6.9
WS57	В	1.00	N/A	5.3 / 9.4	5.5 / 9.5	97	-	<0.01	6.5

All tests performed on fraction of sample passing 2mm sieve NOTE: To convert sulphate results from ${\rm SO_3}$ to ${\rm SO_4}$ multiply by 1.2

§ Specime	en orientation :
N/A	Not applicable due to preparation method and/or sample type
V	Cut vertically from undisturbed sample
Н	Cut horizontally from undisturbed sample

* Tested in	accordance with the following clauses		
of BS 137	77: Part 3: 1990:		
5.2	Acid extract method	9.4	Preparation of pH test specimen
5.3	Water extract method	9.5	Determination of the pH value
5.5	Gravimetric method of analysis		

SUMMARY OF SULPHATE & pH TEST RESULTS

RIVERSIDE, BALLOCH

Appendix C Environmental Laboratory Results

WEST RIVERSIDE AND WOODBANK TABLE SUMMARISING SOIL RESULTS AND HIGHLIGHTING EXCEEDANCES ABOVE HUMAN HEALTH ASSESSMENT CRITERIA

				Strata	l .				1		ı											1		1				
SOM 2.5%		Ass	sessment Crit		WS17	WS18	WS19	WS20	WS24	WS27	WS29	WS30	WS36	WS56	WS7	WS10	WS11	WS12	WS06	WS13	WS14	WS15	WS01	WS02	WS02	WS03	WS04	WS05
Analyte	Units	RwHP	RwoHP	Commercial																								
Stones BG 2.6/3.0	%	-	-	-																								
Moisture content at 30 C	%	-	-	-	17	6.5	13	15	12	8.4	7.2	8.1	18	9.1	7.4	15	18	7.8	29	25	21	20	30	20	16	18	11	29
Arsenic*	mg/kg	37	40	640	6.9	4.5	6.9	5.6	5.5	4.4	3.9	3.8	36	7.1	4	3.9	10	4	6.9	5.4	5.9	8.3	5.7	6.2	5.6	4.2	4	6.3
Cadmium	mg/kg	11	85	190	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.3	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Chromium Trivalent	mg/kg	910	910	8600	14	31	16	15	13	17	14	19	74	22	22	18	21	13	25	21	20	23	29	24	36	17	21	26
Chromium Hexavalant*	mg/kg	6	6	33	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Copper	mg/kg	2400	7100	68000	19	11	19	18	22	19	21	7.4	120	29	18	32	9.5	20	21	17	20	12	21	27	20	11	16	21
Lead*	mg/kg	200	310	2300	47	15	67	60	12	24	9.3	11	2100	21	31	83	37	60	39	34	94	38	53	84	100	26	21	36
Mercury	mg/kg	40	56	1100	0.12	0.05	0.78	0.1	0.05	0.05	0.05	0.05	0.12	0.05	0.18	0.06	0.05	0.16	0.11	0.11	0.24	0.13	0.11	0.11	0.2	0.05	0.07	0.1
Nickel	mg/kg	130	180	980	17	26	13	13	14	17	16	18	55	25	24	32	15	15	22	18	19	20	19	22	30	15	18	23
Selenium	mg/kg	250	430	12000	0.7	0.9	1	0.7	0.5	0.5	0.5	0.9	0.7	0.7	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Zinc	mg/kg	3700	40000	730000	39	71	47	44	28	47	33	40	100	45	41	70	32	74	60	51	64	48	60	91	77	36	46	57
Beryllium	mg/kg	1.7	1.7	12																								
Boron	mg/kg	290	11000	240000																								
Vanadium	mg/kg	410	1200	9000																			ļ					
Cyanide (Total)	mg/kg	-	-	-	0.4	0.2	0.5	0.4	0.2	0.3	0.1	0.3	3.6	0.3	0.2	0.3	0.3	0.2	0.5	0.5	0.4	0.3	0.6	0.3	0.2	0.3	0.3	0.4
Organic matter	%	-	-	-	3.8	0.8	4.7	3.7	1.1	2.2	0.5	1.1	6.7	0.6	8.0	5.9	1.1	0.8	3.9	3.3	3.1	2.2	4.9	2.5	2.1	1.5	1.7	3.7
Phenol, Total	mg/kg	200	690	690	00	50	40	44	40	- 44	44	0.5	00	40	40	40	40	40	40	40	40	40	40	40	40	40	40	10
Sulphate (Total) as SO4	%	-	-	-	38	59	10	11	12	11	11	35	23	12	19	12	12	10	10	10	10	10	10	10	10	10	10	10
pH	pH Units	-	-	-	5.9	7.4	5.4	5.5	6.3	6.2	6.6	6	7.9	6.8	7.8	7.3	6.9	7.5	5.4	5.6	5.6	5.7	6.7	5.6	5.7	5.9	6	5.9
>C10 to C12 Aromatic	mg/kg	180	590	28000	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
>C12 to C16 Aromatic	mg/kg	330	2300	37000	10 10	10	10 10	10 10	10 10	10	10 10	10 10	10 13	10 10	10 10	10 17	10 10	10 14	10 18	10 23	10 10	10 10	10 10	10 10	10 10	10 10	10 10	10 10
>C16 to C21 Aromatic >C21 TO C35 Aromatic	mg/kg mg/ka	540 1500	1900 1900	28000 28000	10	10	10	10	10	10	10	10	13	10	10	17	10	14	10	23	10	10	10	10	10	10	10	10
>C35 to C44 Aromatic	mg/kg	1500	1900	28000	10	10	15	14	10	10	13	10	18	10	10	18	10	14	24	37	10	10	10	10	10	10	10	10
Total Aromatic C5-C35	mg/kg	-	-	-	10	10	13	17	10	10	13	10	10	10	10	10	10	17	24	- 31	10	10	10	10	10	10	10	
TPH Ali/Aro	mg/kg	-	_	-																								$\overline{}$
EPH (C10-C40)	mg/kg	_	_	_	10	10	84	81	10	90	54	10	110	10	10	110	10	92	130	190	10	10	10	10	10	10	10	10
naphthalene	mg/kg	5.6	5.6	460	0.03	10	0-7	01	10	- 55	0.03	0.03	0.03	10	10	110	10	Ü2	100	100	10	10	10	10	10	10	10	- 10
acenaphthylene	mg/kg	420	4600	97000	0.03						0.03	0.03	0.03															
acenaphthene	mg/kg	510	4700	97000	0.03						0.03	0.03	0.03															
fluorene	mg/kg	400	3800	68000	0.03						0.03	0.03	0.03															
phenanthrene	mg/kg	220	1500	22000	0.03						0.03	0.03	0.07															
anthracene	mg/kg	5400	35000	540000	0.03						0.03	0.03	0.03															
fluoranthene	mg/kg	560	1600	23000	0.05						0.03	0.03	0.12															
pyrene	mg/kg	1200	3800	54000	0.04						0.03	0.03	0.14															
benzo(a)anthracene	mg/kg	11	14	170	0.03						0.03	0.03	0.06															
chrysene	mg/kg	22	31	350	0.03						0.03	0.03	0.07															
benzo(b)fluoranthene	mg/kg	3.3	4	44	0.03						0.03	0.03	0.07															$\overline{}$
benzo(k)fluoranthene	mg/kg	93	110	1200	0.03	1				1	0.03	0.03	0.03										1					
benzo(a)pyrene*	mg/kg	2.7	3.2	35	0.03						0.03	0.03	0.05															
benzo(g,h,i)perylene	mg/kg	340	360	4000	0.03						0.03	0.03	0.05															
dibenzo(ah)anthracene	mg/kg	0.28	0.32	3.6	0.03	+			-	+	0.03	0.03	0.03									-	+					
indeno(1,2,3-c,d)pyrene	mg/kg	36	46	510	0.03	+			-	+	0.03	0.03	0.04									-	+					
Total PAH	mg/kg	-	-	-	0.1	+			-	 	0.1	0.1	0.69									-	 					
PCB (as Aroclors)	mg/kg	-	-	-	.	+				 	 																	
Asbestos	TEXT	-	-	-	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N

Asbestos TEXT - - N N N
LQM/CIEH S4ULs Copyright Land Quality Management Limited Reproduced with Permission; Publication Number S4UL3202. All Rights Reserved
* Category 4 Screening Value @ 6% SOM
Version 5.1
** Land Use Scenarios: RwHP = residential with homegrown produce, RwoHP = Residential without homegrown produce

WEST RIVERSIDE AND WOODBANK TABLE SUMMARISING SOIL RESULTS AND HIGHLIGHTING EXCEEDANCES ABOVE HUMAN HEALTH ASSESSMENT CRITERIA

				Strata	Ī	1	ī	1	T	ı	1				1		1					1	1		1			
SOM 2.5%	Ī	Ass	essment Crite		WS08	WS08	WS09	WS16	WS16	WS21	WS22	WS23	WS25	WS26	WS28	WS31	WS32	WS33	WS34	WS35	WS37	WS38	WS38	WS39	WS40	WS41	WS41	WS41
Analyte	Units	RwHP	RwoHP	Commercial																								
Stones BG 2.6/3.0	%		-	-																							$\overline{}$	
Moisture content at 30 C	%		_	<u> </u>	24	13	19	23	72	5.6	8.2	14	21	13	17	15	11	24	12	19	19	26	24	10	18	24	63	55
Arsenic*	mg/kg	37	40	640	8.9	5.9	9.1	5.1	1.4	4	3.2	2.8	4.5	1.7	7	5.3	5.5	6.3	5.4	8.3	9.7	65	3.9	5.6	6.2	14	15	9.1
Cadmium	mg/kg	11	85	190	0.3	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.3	0.3	0.2	0.1	0.1	0.5	0.3	0.3	0.4
Chromium Trivalent	mg/kg	910	910	8600	25	30	27	16	3	16	15	11	18	13	19	20	25	21	22	45	17	34	22	18	26	21	28	34
Chromium Hexavalant*	mg/kg	6	6	33	1	1	1	10	1	1	1	1	1	10	1	1	1	1	1	1	1	1	1	10	1	1	1	1
Copper	mg/kg	2400	7100	68000	36	20	34	19	6.4	24	14	22	24	5.8	19	24	34	20	23	32	130	130	22	12	93	300	250	29
Lead*	mg/kg	200	310	2300	170	13	93	36	15	19	12	5.7	51	13	62	34	260	50	42	50	920	420	13	18	660	200	320	96
Mercury	mg/kg	40	56	1100	0.56	0.05	0.31	0.07	0.05	0.05	0.19	0.05	0.16	0.05	0.05	0.05	0.1	0.06	0.08	0.09	0.29	0.09	0.05	0.05	0.12	0.63	0.82	0.05
Nickel	mg/kg	130	180	980	31	29	29	15	3.4	18	14	13	19	10	17	19	23	17	22	49	50	77	22	15	30	52	61	27
Selenium	mg/kg	250	430	12000	0.8	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.6	1.7	1.1	1
Zinc	mg/kg	3700	40000	730000	110	55	100	49	16	48	34	29	64	31	39	53	72	55	60	81	98	87	40	39	340	89	92	100
Beryllium	mg/kg	1.7	1.7	12	110	- 55	100	73	10	40	34	23	04	51	33	- 55	12	- 55	00	01	30	O/	70	33	340	- 03	32	100
Boron	mg/kg	290	11000	240000		+				1					1							1						1
Vanadium	mg/kg	410	1200	9000																							$\overline{}$	1
Cvanide (Total)	mg/kg		-	-	0.4	0.1	0.3	0.3	0.3	0.1	0.2	0.1	0.2	0.2	0.4	0.2	0.2	0.4	0.2	0.3	3.2	2.3	0.1	0.3	0.6	1.5	0.9	0.9
Organic matter	%	_	_	_	4.9	0.5	3.3	3	25	0.7	3.5	0.4	6.6	1.4	3.8	2.8	1.9	3.5	1.2	3.6	6.9	11	0.3	1.5	3.6	9.9	8.2	7.4
Phenol. Total	mg/kg	200	690	690	4.0	0.0	0.0	- ŭ	20	0.7	0.0	0.4	0.0	17	0.0	2.0	1.0	0.0	1.2	0.0	0.0		0.0	1.0	0.0	0.0		· · · · ·
Sulphate (Total) as SO4	% %	-	-	-	12	10	10	10	37	12	17	10	25	15	10	73	11	13	14	18	16	25	10	10	17	19	27	88
nH	pH Units				5.8	6.4	6.4	6.2	5.8	6	6.2	6.3	6.4	5.7	5.4	7.5	7.5	6.5	7.5	6.2	7.4	6.4	6.3	5.2	7.4	7.8	7	5.4
>C10 to C12 Aromatic	ma/ka	180	590	28000	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
>C12 to C16 Aromatic	mg/kg	330	2300	37000	10	10	10	10	24	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
>C16 to C21 Aromatic	mg/kg	540	1900	28000	10	10	10	10	47	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	15	25	14	10
>C21 TO C35 Aromatic	mg/kg	1500	1900	28000	10	10	10	10	77	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10			
>C35 to C44 Aromatic	mg/kg	1500	1900	28000	10	10	10	10	77	10	10	10	10	10	10	10	20	10	10	10	10	10	10	10	74	29	10	26
Total Aromatic C5-C35	mg/kg	-	-	-						1					1													
TPH Ali/Aro	ma/ka	-	-	_											i													
EPH (C10-C40)	mg/kg	-	-	-	10	10	10	10	530	10	10	10	10	10	10	10	75	10	10	10	10	10	10	10	270	210	54	150
naphthalene	mg/kg	5.6	5.6	460	0.03			0.03	0.03							0.03	0.19				0.03	0.03	0.03		0.03	0.03		
acenaphthylene	mg/kg	420	4600	97000	0.03			0.03	0.03						i	0.03	0.03				0.03	0.03	0.03		0.04	0.03		
acenaphthene	mg/kg	510	4700	97000	0.03			0.03	0.03							0.03	0.15				0.03	0.03	0.03		0.03	0.03		
fluorene	ma/ka	400	3800	68000	0.03			0.03	0.03							0.03	0.13				0.03	0.03	0.03		0.03	0.03		
phenanthrene	mg/kg	220	1500	22000	0.03			0.03	0.03							0.03	0.66				0.06	0.03	0.03		0.5	0.12		
anthracene	mg/kg	5400	35000	540000	0.03			0.03	0.03							0.03	0.14				0.03	0.03	0.03		0.13	0.09		
fluoranthene	ma/ka	560	1600	23000	0.03			0.03	0.03							0.03	0.51				0.09	0.03	0.03		1	0.14		
pyrene	mg/kg	1200	3800	54000	0.03			0.03	0.03							0.03	0.48				0.09	0.03	0.03		0.92	0.14		
benzo(a)anthracene	mg/kg	11	14	170	0.03			0.03	0.03							0.03	0.17				0.05	0.03	0.03		0.49	0.05		
chrysene	mg/kg	22	31	350	0.03			0.03	0.03							0.03	0.19				0.06	0.03	0.03		0.5	0.09		
benzo(b)fluoranthene	mg/kg	3.3	4	44	0.03			0.03	0.03							0.03	0.17				0.06	0.03	0.03		0.61	0.03		
benzo(k)fluoranthene	mg/kg	93	110	1200	0.03			0.03	0.03							0.03	0.07				0.03	0.03	0.03		0.23	0.03		
benzo(a)pyrene*	mg/kg	2.7	3.2	35	0.03			0.03	0.03							0.03	0.14				0.04	0.03	0.03		0.42	0.03		
benzo(g,h,i)perylene	mg/kg	340	360	4000	0.03			0.03	0.03						ĺ	0.03	0.09				0.03	0.03	0.03		0.33	0.03		
dibenzo(ah)anthracene	mg/kg	0.28	0.32	3.6	0.03			0.03	0.03							0.03	0.03				0.03	0.03	0.03		0.08	0.03		
indeno(1,2,3-c,d)pyrene	mg/kg	36	46	510	0.03			0.03	0.03						ĺ	0.03	0.08				0.03	0.03	0.03		0.3	0.03	í '	
Total PAH	mg/kg	-	-	-	0.1			0.1	0.1							0.1	3.2				0.46	0.1	0.1		5.6	0.64		
PCB (as Aroclors)	mg/kg	-	-	-											ĺ													
Asbestos	TEXT	-	-	-	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N

Asbestos TEXT - - - LQM/CIEH S4ULs Copyright Land Quality Management Limited Reproduced with Permission; Publication N * Category 4 Screening Value @ 6% SOM ** Land Use Scenarios: RwHP = residential with homegrown produce, RwoHP = Residential without homeg

WEST RIVERSIDE AND WOODBANK TABLE SUMMARISING SOIL RESULTS AND HIGHLIGHTING EXCEEDANCES ABOVE HUMAN HEALTH ASSESSMENT CRITERIA

				Strata															
SOM 2.5%	Γ	Ass	essment Crite		WS43	WS44	WS45	WS45	WS46	WS47	WS47	WS49	WS49	WS50	WS51	WS52	WS53	WS54	WS57
Analyte	Units	RwHP	RwoHP	Commercial															
Stones BG 2.6/3.0	%		-	-															
Moisture content at 30 C	%		-	-	32	23	28	24	14	26		17	73	19	11	9.2	13	9.2	16
Arsenic*	mg/kg	37	40	640	13	7.9	9.9	4.6	24	6.8	20	20	11	10	4.4	3.9	6.4	4.2	5.7
Cadmium	mg/kg	11	85	190	0.3	0.2	0.3	0.1	0.6	0.8	0.4	0.3	0.1	0.2	0.1	0.7	0.4	0.1	0.4
Chromium Trivalent	mg/kg	910	910	8600	14	10	21	17	41	15	820	150	19	32	21	16	20	20	23
Chromium Hexavalant*	mg/kg	6	6	33	1	10	1	1	1	1	1	8	3	1	1	10	1	1	1
Copper	mg/kg	2400	7100	68000	170	380	83	15	210	74	170	170	150	120	33	1600	48	30	48
Lead*	mg/kg	200	310	2300	250	66	120	32	2000	510	5100	970	270	140	27	130	88	10	500
Mercury	mg/kg	40	56	1100	0.22	0.08	0.11	0.05	0.25	0.13	0.14	0.14	0.05	0.13	0.05	0.15	0.09	0.05	0.2
Nickel	mg/kg	130	180	980	46	19	31	14	65	33	62	69	110	47	15	15	20	20	15
Selenium	mg/kg	250	430	12000	0.8	2.5	0.9	0.5	1.1	0.5	0.5	0.6	0.5	0.6	0.8	0.5	0.5	0.5	0.5
Zinc	mg/kg	3700	40000	730000	130	59	62	36	180	62	150	120	79	92	38	110	71	39	650
Beryllium	mg/kg	1.7	1.7	12	130	- 55	02	30	100	02	130	120	7.5	32	30	110	- ' '	- 33	030
Boron	mg/kg	290	11000	240000															
Vanadium	mg/kg	410	1200	9000															
Cvanide (Total)	mg/kg	-	-	-	0.4	0.5	0.8	0.4	3.5	12	120	18	4.3	0.9	0.3	0.1	0.2	0.1	0.6
Organic matter	%	-	_	_	12	9.4	7.9	3.1	8.7	> 25	8.9	9.1	4.3	5.5	2.6	0.4	2.3	0.2	2.3
Phenol. Total	ma/ka	200	690	690		0	7.0	0	0	, 20	0.0	0		0.0	2.0	0	2.0	0.2	2.0
Sulphate (Total) as SO4	%	-	-	-	160	820	16	20	39	28	37	15	390	23	86	10	43	10	10
pH	pH Units	-	-	_	6.4	10.8	5.5	5.7	6.8	5.8	7	6.1	6.1	7.1	8.8	7.7	7.7	8.3	6.5
>C10 to C12 Aromatic	ma/ka	180	590	28000	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
>C12 to C16 Aromatic	mg/kg	330	2300	37000	10	10	10	10	10	10	10	10	11	10	10	10	10	10	10
>C16 to C21 Aromatic	mg/kg	540	1900	28000	18	10	10	10	10	27	10	12	41	30	10	10	13	10	17
>C21 TO C35 Aromatic	ma/ka	1500	1900	28000															
>C35 to C44 Aromatic	ma/ka	1500	1900	28000	26	10	10	10	10	40	10	20	110	33	10	10	24	10	58
Total Aromatic C5-C35	mg/kg	-	-	-															
TPH Ali/Aro	ma/ka	-	-	-															
EPH (C10-C40)	mg/kg	-	-	-	170	10	10	10	10	270	10	94	1500	290	10	10	120	10	260
naphthalene	ma/ka	5.6	5.6	460	0.03	0.03		0.03		0.03		0.03		0.03	0.03	0.03	0.03		
acenaphthylene	mg/kg	420	4600	97000	0.03	0.03		0.03		0.03		0.03		0.03	0.03	0.03	0.03		
acenaphthene	mg/kg	510	4700	97000	0.03	0.03		0.03		0.03		0.03		0.03	0.03	0.03	0.03		
fluorene	mg/kg	400	3800	68000	0.03	0.03		0.03		0.03		0.03		0.03	0.03	0.03	0.03		
phenanthrene	mg/kg	220	1500	22000	0.09	0.04		0.03		0.2		0.05		0.14	0.08	0.03	0.26		
anthracene	mg/kg	5400	35000	540000	0.09	0.04		0.03		0.13		0.06		0.06	0.04	0.03	0.08		
fluoranthene	mg/kg	560	1600	23000	0.09	0.04		0.03		0.31		0.07		0.18	0.11	0.03	0.58		
pyrene	mg/kg	1200	3800	54000	0.07	0.04		0.03		0.29		0.06		0.17	0.11	0.03	0.56		
benzo(a)anthracene	mg/kg	11	14	170	0.03	0.03		0.03		0.13		0.03		0.08	0.06	0.03	0.28		
chrysene	mg/kg	22	31	350	0.03	0.03		0.03		0.15		0.03		0.09	0.06	0.03	0.29		
benzo(b)fluoranthene	mg/kg	3.3	4	44	0.03	0.03		0.03		0.15		0.06		0.09	0.07	0.03	0.43		
benzo(k)fluoranthene	mg/kg	93	110	1200	0.03	0.03		0.03		0.06		0.03		0.04	0.03	0.03	0.16		
benzo(a)pyrene*	mg/kg	2.7	3.2	35	0.03	0.03		0.03		0.1		0.03		0.06	0.05	0.03	0.34		
benzo(g,h,i)perylene	mg/kg	340	360	4000	0.03	0.03		0.03		0.08		0.03		0.05	0.05	0.03	0.26		
dibenzo(ah)anthracene	mg/kg	0.28	0.32	3.6	0.03	0.03		0.03		0.03		0.03		0.03	0.03	0.03	0.06		
indeno(1,2,3-c,d)pyrene	mg/kg	36	46	510	0.03	0.03		0.03		0.07		0.03		0.05	0.04	0.03	0.21		
Total PAH	mg/kg	-	-	-	0.34	0.16		0.1		1.7		0.3		1	0.64	0.1	3.5		
PCB (as Aroclors)	mg/kg	-	-	-															
Asbestos	TEXT	-	-	-	N	N	N	N	N	N		N	N	N	N	N	N	N	N

Asbestos TEXT - - - LQM/CIEH S4ULs Copyright Land Quality Management Limited Reproduced with Permission; Publication N * Category 4 Screening Value @ 6% SOM ** Land Use Scenarios: RwHP = residential with homegrown produce, RwoHP = Residential without homeg

RIVERSIDE, BALLOCH

Appendix D Ground Gas Data (Pending)

Date	Borehole	Atmospheric		Gas Co	mpositio	n	Differential	Flow	Depth	Remarks
	No.	Pressure	CH4	CO2	O2	H2S	Pressure		of	
									Water	
		(mBar)	(%vol)	(%vol)	(%vol)	(ppm)	(Pa)	(l/hr)	(m)	
19/04/17	WS1	1032	0.0	4.1	14.1	0.0	0.00	0.00	1.03	
19/04/17	WS2B	1031	0.0	0.6	19.9	0.1	0.00	0.00	1.74	
19/04/17	WS3	1031	0.0	0.2	20.4	0.0	0.00	0.00	1.31	
19/04/17	WS4	1033	0.0	2.1	17.8	0.1	0.00	0.00	3.79	
19/04/17	WS6	1037	0.0	3.1	16.1	0.0	0.00	0.00	2.02	
19/04/17	WS7	1031	0.0	0.7	19.7	0.0	0.00	0.00	Dry	
19/04/17	WS8	1026	0.1	1.4	20.2	0.0	0.00	0.00	1.67	
19/04/17	WS10	1029	0.2	3.1	16.8	0.0	0.00	0.00	1.68	
19/04/17	WS11	1030	0.0	2.7	17.1	0.1	0.00	0.00	Dry	
19/04/17	WS12	1029	0.1	0.5	20.1	0.1	0.00	0.00	Dry	
19/04/17	WS14	1030	0.0	4.4	14.3	0.0	0.00	0.00	2.04	
20/04/17	WS15	1029	0.0	0.5	20.5	0.0	0.00	0.00	2.32	
21/04/17	WS16	1028	0.1	4.2	14.7	0.0	0.00	0.00	Dry	
20/04/17	WS18	1029	0.1	0.4	20.1	0.0	0.00	0.00	Dry	
20/04/17	WS20	1028	0.0	0.6	19.7	0.0	0.00	0.00	Dry	
20/04/17	WS21	1028	0.0	0.0	20.3	0.0	0.00	0.00	Dry	
20/04/17	WS22	1029	0.1	1.1	19.0	0.0	0.00	0.00	0.84	
20/04/17	WS23	1029	0.0	0.4	20.1	0.0	0.00	0.00	Dry	
20/04/17	WS24	1031	0.0	0.8	19.9	0.0	0.00	0.00	Dry	
20/04/17	WS25	1031	0.0	1.1	19.4	0.1	0.00	0.00	Dry	
20/04/17	WS26	1029	0.0	0.6	19.7	0.0	0.00	0.00	Dry	
20/04/17	WS29	1032	0.0	0.2	20.4	0.0	0.00	0.00	1.96	
20/04/17	WS30	1033	0.0	0.8	19.7	0.0	0.00	0.00	2.29	
20/04/17	WS35	1032	1.1	2.4	15.6	0.0	0.00	0.30	0.79	
20/04/17	WS36	1031	0.0	1.3	19.0	0.0	0.00	0.00	2.10	
20/04/17	WS37	1032	0.0	1.2	18.9	0.0	0.00	0.00	2.15	
21/04/17	WS38	1033	0.00	0.60	20.30	0.00	0.00	0.00	3.01	
21/04/17	WS40C	1032	0.00	0.80	19.90	0.00	0.00	0.00	2.71	
21/04/17	WS41	1032	0.00	1.10	19.40	0.00	0.00	0.00	2.82	
21/04/17	WS43	1032	0.00	2.10	17.30	0.00	0.00	0.00	2.49	
21/04/17	WS49	1032	0.00	4.80	13.30	0.00	0.00	0.00	1.71	
21/04/17	WS50	1033	0.00	1.50	19.10	0.00	0.00	0.00	2.24	
21/04/17	WS51B	1034	0.00	1.30	17.40	0.00	0.00	0.10	2.03	
21/04/17	WS52A	1032	0.00	1.20	19.20	0.10	0.00	0.00	2.61	
21/04/17	WS53	1033	0.10	0.80	17.20	0.00	0.00	0.00	Dry	
21/04/17	WS54	1029	0.10	3.70	9.90	0.00	0.00	0.00	Dry	
ntract No.	RESULT	S OF GAS ANI	D WATI	ER LEVI	EL MON	ITORING	IN STANDPI	PES	And the	Fig. No.
2304			Rive	erside B	alloch.				THE STATE OF THE S	1

Date	Borehole	Atmospheric		Gas Co	mpositio	n	Differential	Flow	Depth	Remarks
	No.	Pressure	CH4	CO2	O2	H2S	Pressure		of	
									Water	
		(mBar)	(%vol)	(%vol)	(%vol)	(ppm)	(Pa)	(l/hr)	(m)	
26/04/17	WS1	1014	0.0	3.7	14.8	0.0	0.00	0.00	0.98	
26/04/17	WS2B	1014	0.0	0.4	19.1	0.2	0.00	0.00	1.60	
26/04/17	WS3	1015	0.0	0.5	19.1	0.0	0.00	0.00	1.40	
26/04/17	WS4	1014	0.0	1.8	18.5	0.1	0.00	0.00	3.50	
26/04/17	WS6	1015	0.0	2.4	15.8	0.0	0.00	0.00	2.20	
26/04/17	WS7	1016	0.0	1.2	19.4	0.1	0.00	0.00	Dry	
26/04/17	WS8	1015	0.1	1.1	20.8	0.0	0.00	0.00	1.76	
26/04/17	WS10	1016	0.1	2.8	17.5	0.0	0.00	0.00	1.55	
26/04/17	WS11	1013	0.0	2.1	16.5	0.2	0.00	0.00	Dry	
26/04/17	WS12	1014	0.0	0.6	19.1	0.1	0.00	0.00	Dry	
26/04/17	WS14	1014	0.0	4.1	12.6	0.0	0.00	0.00	2.12	
27/04/17	WS15	998	0.0	0.3	19.1	0.1	0.00	0.00	2.44	
27/04/17	WS16	998	0.1	3.5	15.2	0.0	0.00	0.00	Dry	
27/04/17	WS18	996	0.1	0.6	20.9	0.0	0.00	0.00	Dry	
27/04/17	WS20	997	0.0	0.4	20.6	0.0	0.00	0.00	Dry	
27/04/17	WS21	995	0.0	0.0	19.5	0.0	0.00	0.00	Dry	
27/04/17	WS22	997	0.2	0.9	19.7	0.0	0.00	0.00	0.80	
27/04/17	WS23	997	0.0	0.6	19.2	0.0	0.00	0.00	Dry	
27/04/17	WS24	998	0.0	0.5	21.2	0.0	0.00	0.00	Dry	
27/04/17	WS25	996	0.0	0.8	19.1	0.1	0.00	0.00	Dry	
27/04/17	WS26	994	0.0	0.4	19.5	0.0	0.00	0.00	Dry	
27/04/17	WS29	996	0.0	0.3	20.0	0.0	0.00	0.00	1.86	
27/04/17	WS30	996	0.0	0.9	19.1	0.1	0.00	0.00	2.14	
27/04/17	WS35	998	0.8	2.1	15.1	0.0	0.00	0.30	0.89	
27/04/17	WS36	997	0.0	1.9	19.8	0.0	0.00	0.00	2.04	
27/04/17	WS37	994	0.0	1.4	18.5	0.0	0.00	0.00	2.00	
28/04/17	WS38	1004	0.00	0.80	21.00	0.00	0.00	0.00	2.91	
28/04/17	WS40C	1002	0.00	1.20	20.80	0.00	0.00	0.00	2.88	
28/04/17	WS41	1005	0.00	1.00	20.60	0.00	0.00	0.00	3.11	
28/04/17	WS43	1004	0.00	2.30	17.90	0.00	0.00	0.00	2.33	
28/04/17	WS49	1003	0.00	4.20	14.50	0.00	0.00	0.00	1.81	
28/04/17	WS50	1003	0.00	1.30	18.00	0.00	0.00	0.00	2.05	
28/04/17	WS51B	1002	0.00	1.80	16.20	0.00	0.00	0.10	1.89	
28/04/17	WS52A	1004	0.00	1.40	18.30	0.20	0.00	0.00	2.51	
28/04/17	WS53	1006	0.20	0.90	16.50	0.00	0.00	0.00	Dry	
28/04/17	WS54	1004	0.10	3.80	11.60	0.00	0.00	0.00	Dry	
ntract No.	RESULT	S OF GAS ANI	D WATI	ER LEVI	EL MON	ITORING	IN STANDPI	PES	And the	Fig. No.
2304			Rive	erside B	alloch.				S. C.	1

Ī	Date	Borehole	Atmospheric		Gas Co	mpositio	n	Differential	Flow	Depth	Remarks
		No.	Pressure	CH4	CO2	O2	H2S	Pressure		of	
										Water	
			(mBar)	(%vol)	(%vol)	(%vol)	(ppm)	(Pa)	(l/hr)	(m)	
ľ	17/05/17	WS1	1004	0.0	3.8	15.2	0.0	0.00	0.00	1.07	
Ī	17/05/17	WS2B	1007	0.0	0.6	20.1	0.0	0.00	0.00	1.30	
	17/05/17	WS3	1006	0.0	0.7	20.1	0.0	0.00	0.00	1.80	No plastic
ľ	17/05/17	WS4	1004	0.0	1.8	19.1	0.0	0.00	0.00	3.20	·
-		WS5									Unable to locate
-	17/05/17	WS6	1006	0	2.8	18.5	0.0	0.00	0.00	2.10	
ŀ	17/05/17	WS7	1007	0	1.2	15.8	0.0	0.00	0.00	Dry	
ľ	17/05/17	WS8	1008	0.10	1.1	19.4	0.0	0.00	0.00	1.65	
ľ	17/05/17	WS10	1004	0.10	2.9	17.4	0.0	0.00	0.00	1.70	
ŀ	17/05/17	WS11	1006	0	3.0	16.6	0.0	0.00	0.00	Dry	
ŀ	17/05/17	WS12	1006	0.10	0.6	20.4	0.0	0.00	0.00	Dry	
ŀ	11700711	WS13	1000	0.10	0.0	20.1	0.0	0.00	0.00	Diy	Unable to locate
ŀ	17/05/17	WS14	1006	0	4.0	13.2	0.0	0.00	0.00	1.90	STIGOTO TO TOURIE
ŀ	17/05/17	WS15	1007	0	0.6	19.4	0.0	0.00	0.00	1.30	
ŀ	17/05/17	WS16	1007	0.10	3.6	15.2	0.0	0.00	0.00	Dry	
ŀ	17/05/17	WS18	1019	0.10	0.8	20.3	0.0	0.00	0.00	Dry	
ŀ	18/05/17	WS20	1019	0	0.6	20.6	0.0	0.00	0.00	Dry	
ŀ	18/05/17	WS21	1021	0	0.0	20.6	0.0	0.00	0.00	Dry	
ŀ											
ŀ	18/05/17	WS22	1020	0.10	0.9	19.4	0.0	0.00	0.00	1.10	
ŀ	18/05/17	WS23	1019	0	0.6	20.3	0.0	0.00	0.00	Dry	
ŀ	18/05/17	WS24	1021	0	0.5	21.1	0.0	0.00	0.00	Dry	
ŀ	18/05/17	WS25	1020	0	0.8	19.4	0.0	0.00	0.00	Dry	
ŀ	18/05/17	WS26	1014	0	0.7	15.6	0.0	0.00	0.00	Dry	
ŀ	18/05/17	WS29	1008	0.10	0.9	20.0	0.0	0.00	0.00	1.80	
ŀ	19/05/17	WS30	1016	0	1.1	19.5	0.0	0.00	0.00	1.76	
ŀ	19/05/17	WS35	1017	0.20	2.6	16.2	0.0	0.00	0.00	0.80	
ŀ	19/05/17	WS36	1009	0	1.6	19.6	0.0	0.00	0.00	Dry	
ŀ	18/05/17	WS37	1010	0	1.2	18.0	0.0	0.00	0.00	2.35	
ŀ	18/05/17	WS38	1019	0.20	0.90	20.10	0.0	0.00	0.00	2.05	
ŀ	18/05/17	WS40C	1020	0.10	1.40	19.30	0.0	0.00	0.00	2.84	
ŀ	18/05/17	WS41	1020	0.10	2.30	18.50	0.0	0.00	0.00	2.50	
ŀ	19/05/17	WS43	1014	0.10	1.10	19.80	0.0	0.00	0.00	2.83	
ŀ	19/05/17	WS45	1017	0	1.70	18.40	0.0	0.11	0.00	2.44	
-	18/05/17	WS49	1019	0	5.10	16.50	0.0	0.00	0.00	1.82	
ŀ	18/05/17	WS50	1018	0	1.40	15.50	0.0	0.00	0.00	2.40	
ŀ	19/05/17	WS51B	1015	0	1.30	17.90	0.0	0.00	0.10	2.15	
ŀ	19/05/17	WS52A	1016	0	1.20	19.80	0.0	0.00	0.00	2.70	
ŀ	19/05/17	WS53	1014	0.1	2.40	15.10	0.0	0.00	0.00	Dry	
ŀ	19/05/17	WS54	1006	0.2	3.60	12.50	0.0	0.00	0.00	Dry	
ŀ	18/05/17	WS56	1021	0.1	0.60	11.40	0.0	0.00	0.00	Dry	
1		WS57									Unable to locate
ni	tract No.	RESULT	S OF GAS ANI	O WATI	ER LEVI	EL MON	TORING	IN STANDPI	PES	STORY OF THE PROPERTY OF THE P	Fig. No.
	2304			Rive	erside B	alloch.					1

Ī	Date	Borehole	Atmospheric		Gas Co	mpositio	n	Differential	Flow	Depth	Remarks
		No.	Pressure	CH4	CO2	O2	H2S	Pressure		of	
										Water	
l			(mBar)	(%vol)	(%vol)	(%vol)	(ppm)	(Pa)	(l/hr)	(m)	
Ī	30/05/17	WS1	1007	0.0	3.9	16.5	0.0	0.00	0.00	1.09	
Ī	30/05/17	WS2B	1006	0.0	0.8	19.2	0.0	0.00	0.00	1.88	
Ī	30/05/17	WS3	1004	0.0	0.8	20.1	0.0	0.00	0.00	2.26	No plastic
Ī	30/05/17	WS4	1008	0.0	1.6	19.7	0.0	0.00	0.00	4.96	
ſ		WS5									Unable to locate
ſ	30/05/17	WS6	1006	0.0	3.0	16.6	0.0	0.00	0.00	1.97	
Ī	30/05/17	WS7	1007	0.0	1.1	19.3	0.0	0.00	0.00	Dry	
Ī	30/05/17	WS8	1008	0.0	1.8	19.0	0.0	0.00	0.00	1.62	
Ī	30/05/17	WS10	1006	0.1	3.3	16.6	0.0	0.00	0.00	1.72	
ľ	30/05/17	WS11	1007	0.0	3.1	16.9	0.0	0.00	0.00	Dry	
ľ	30/05/17	WS12	1007	0.1	0.9	19.6	0.0	0.00	0.00	Dry	
ļ		WS13								,	Unable to locate
ļ	30/05/17	WS14	1006	0.0	3.9	14.8	0.0	0.00	0.00	1.97	
ľ	30/05/17	WS15	1008	0.0	0.7	20.1	0.0	0.00	0.00	1.27	
t	30/05/17	WS16	1006	0.2	3.8	15.2	0.0	0.00	0.00	Dry	
ľ	31/05/17	WS18	1021	0.0	0.8	19.5	0.0	0.00	0.00	Dry	
ŀ	31/05/17	WS20	1020	0.0	0.9	19.4	0.0	0.00	0.00	Dry	
ŀ	31/05/17	WS21	1019	0.0	0.1	20.3	0.0	0.00	0.00	Dry	
ŀ	31/05/17	WS22	1021	0.0	1.0	18.8	0.0	0.00	0.00	1.18	
ŀ	31/05/17	WS23	1019	0.0	0.6	20.2	0.0	0.00	0.00	Dry	
ŀ	31/05/17	WS24	1013	0.0	0.5	20.2	0.0	0.00	0.00	Dry	
ŀ	31/05/17	WS25	1021	0.0	0.8	19.6	0.0	0.00	0.00	Dry	
ŀ	31/05/17	WS26	1016	0.0	0.9	19.3	0.0	0.00	0.00	Dry	
ŀ	30/05/17	WS29	1009	0.0	0.9	20.0	0.0	0.00	0.00	1.98	
ŀ	01/06/17	WS30	1009	0.0	1.1	19.5	0.0	0.00	0.00	1.81	
ŀ	01/06/17	WS35	1017	0.0	3.5	17.5	0.0	0.00	0.00	0.89	
ŀ				0.0		20.1					
ŀ	31/05/17	WS36	1010		0.7		0.0	0.00	0.00	Dry	
ŀ	30/05/17	WS37	1011	0.0	0.8	19.9	0.0	0.00	0.00	2.39	
ŀ	31/05/17	WS38	1020	0.20	0.90	20.10	0.0	0.00	0.00	2.08	
ŀ	31/05/17	WS40C	1019	0.10	1.60	19.30	0.0	0.00	0.00	2.89	
ŀ	31/05/17	WS41	1020	0.10	4.50	13.50	0.0	0.00	0.00	2.51	
ŀ	01/06/17	WS43	1015	0.10	1.10	19.80	0.0	0.00	0.00	2.98	
ŀ	01/06/17	WS45	1016	0.00	1.70	19.40	0.0	0.11	0.00	2.59	
ŀ	31/05/17	WS49	1020	0.00	5.10	14.70	0.0	0.00	0.00	1.83	
ŀ	31/05/17	WS50	1018	0.00	1.40	14.50	0.0	0.00	0.00	2.43	
ŀ	01/06/17	WS51B	1014	0.00	1.10	17.60	0.0	0.00	0.10	2.16	
ŀ	01/06/17	WS52A	1014	0.00	0.90	19.50	0.0	0.00	0.00	2.73	
ŀ	01/06/17	WS53	1014	0.10	2.40	15.70	0.0	0.00	0.00	Dry	
ŀ	01/06/17	WS54	1004	0.00	3.30	10.20	0.0	0.00	0.00	Dry	
ŀ	31/05/17	WS56	1022	0.10	0.70	20.50	0.0	0.00	0.00	Dry	
1		WS57]							Unable to locate
nt	tract No.	RESULT	S OF GAS ANI	O WATI	ER LEVI	EL MONI	TORING	IN STANDPII	PES	STORY OF THE PROPERTY OF THE P	Fig. No.
	2304			Rive	erside B	alloch.				10%	1

ſ	Date	Borehole	Atmospheric		Gas Co	mpositio	n	Differential	Flow	Depth	Remarks
		No.	Pressure	CH4	CO2	O2	H2S	Pressure		of	
										Water	
			(mBar)	(%vol)	(%vol)	(%vol)	(ppm)	(Pa)	(l/hr)	(m)	
ĺ	07/06/17	WS1	1005	0.0	3.8	16.5	0.0	0.00	0.00	1.04	
ĺ	07/06/17	WS2B	1004	0.0	0.8	19.2	0.0	0.00	0.00	1.82	
	07/06/17	WS3	1003	0.0	0.8	20.1	0.0	0.00	0.00	2.22	No plastic
	07/06/17	WS4	1007	0.0	1.6	19.7	0.0	0.00	0.00	4.92	
ĺ		WS5									Unable to locate
ĺ	07/06/17	WS6	1007	0.0	3.2	16.4	0.0	0.00	0.00	1.95	
ĺ	07/06/17	WS7	1007	0.0	1.1	19.2	0.0	0.00	0.00	Dry	
	07/06/17	WS8	1006	0.0	1.7	18.8	0.0	0.00	0.00	1.57	
Î	07/06/17	WS10	1005	0.1	3.4	16.4	0.0	0.00	0.00	1.69	
ľ	07/06/17	WS11	1006	0.0	3.0	16.9	0.0	0.00	0.00	Dry	
ľ	07/06/17	WS12	1006	0.1	0.8	19.4	0.0	0.00	0.00	Dry	
ľ		WS13								·	Unable to locate
ľ	07/06/17	WS14	1005	0.0	3.9	14.7	0.0	0.00	0.00	1.94	
ľ	08/06/17	WS15	1007	0.0	0.8	20.1	0.0	0.00	0.00	1.24	
Ì	08/06/17	WS16	1005	0.2	3.8	15.2	0.0	0.00	0.00	Dry	
Ì	08/06/17	WS18	1021	0.0	0.8	19.5	0.0	0.00	0.00	Dry	
ľ	08/06/17	WS20	1020	0.0	0.9	19.3	0.0	0.00	0.00	Dry	
ľ	08/06/17	WS21	1020	0.0	0.1	20.3	0.0	0.00	0.00	Dry	
ľ	08/06/17	WS22	1019	0.0	0.9	18.7	0.0	0.00	0.00	1.16	
ľ	08/06/17	WS23	1019	0.0	0.6	20.1	0.0	0.00	0.00	Dry	
ľ	08/06/17	WS24	1020	0.0	0.5	20.2	0.0	0.00	0.00	Dry	
ľ	08/06/17	WS25	1020	0.0	0.9	19.5	0.0	0.00	0.00	Dry	
ľ	08/06/17	WS26	1014	0.0	0.8	19.3	0.0	0.00	0.00	Dry	
ľ	09/06/17	WS29	1007	0.1	0.9	20	0.0	0.00	0.00	1.92	
ľ	09/06/17	WS30	1015	0.0	1.1	19.5	0.0	0.00	0.00	1.78	
ľ	09/06/17	WS35	1014	0.0	3.4	17.4	0.0	0.00	0.00	0.86	
ľ	09/06/17	WS36	1009	0.0	0.7	20.1	0.0	0.00	0.00	Dry	
ŀ	07/06/17	WS37	1009	0.0	0.8	19.9	0.0	0.00	0.00	2.35	
ŀ	07/06/17	WS38	1019	0.20	0.90	20.1	0.0	0.00	0.00	2.06	
ŀ	08/06/17	WS40C	1019	0.10	1.70	19.2	0.0	0.00	0.00	2.85	
ŀ	08/06/17	WS41	1019	0.10	4.50	13.5	0.0	0.00	0.00	2.49	
ŀ	08/06/17	WS43	1012	0.10	1.10	19.8	0.0	0.00	0.00	2.49	
ŀ	08/06/17	WS45	1012	0.00	1.70	19.3	0.0	0.00	0.00	2.54	
ŀ	08/06/17	WS49	1014	0.00	5.10	14.6	0.0	0.00	0.00	1.80	
ŀ	08/06/17	WS50	1019	0.00	1.30	14.4	0.0	0.00	0.00	2.40	
ŀ	09/06/17	WS51B	1019	0.00	0.90	17.2	0.0	0.00	0.10	2.40	
ŀ	09/06/17	WS52A	1013	0.00	0.90	19.3	0.0	0.00	0.00	2.70	
ŀ	09/06/17	WS53	1012	0.10	2.30	15.6	0.0	0.00	0.00	Dry	
ŀ	08/06/17	WS54	1003	0.00	3.30	10.2	0.0	0.00	0.00	Dry	
ŀ	09/06/17	WS56	1003	0.10	0.70	20.3	0.0	0.00	0.00	Dry	
ŀ	03/00/17	WS57	1020	0.10	0.70	20.0	0.0	0.00	0.00	ыу	Unable to locate
r	tract No		I S OF GAS ANI) WATI	-R E\/'	EL MONI	TOPING	IN STANDDI	DE6	sh- de	
1	tract No.	RESULT	O OF GAS ANI	VVAII	-N FEAI	_L MON	IORING	IN STANDPI	LO	STORY.	Fig. No.
	2304			Rive	erside B	alloch.				3	1
]									1

ſ	Date	Borehole	Atmospheric		Gas Co	mpositio	n	Differential	Flow	Depth	Remarks
		No.	Pressure	CH4	CO2	O2	H2S	Pressure		of	
										Water	
L			(mBar)	(%vol)	(%vol)	(%vol)	(ppm)	(Pa)	(l/hr)	(m)	
Ī	21/06/17	WS1	1003	0.0	3.7	16.4	0.0	0.00	0.00	1.02	
ſ	21/06/17	WS2B	1001	0.0	0.8	19.1	0.0	0.00	0.00	1.80	
ſ	21/06/17	WS3	1001	0.0	0.7	20.0	0.0	0.00	0.00	2.20	No plastic
ſ	21/06/17	WS4	1005	0.0	1.5	19.6	0.0	0.00	0.00	4.90	
ſ		WS5									Unable to locate
ſ	21/06/17	WS6	1005	0.0	3.1	16.3	0.0	0.00	0.00	1.94	
Ī	21/06/17	WS7	1005	0.0	1.0	19.1	0.0	0.00	0.00	Dry	
Ī	21/06/17	WS8	1003	0.0	1.6	18.6	0.0	0.00	0.00	1.55	
Ī	21/06/17	WS10	1004	0.1	3.3	16.3	0.0	0.00	0.00	1.65	
ľ	21/06/17	WS11	1004	0.0	3.0	16.7	0.0	0.00	0.00	Dry	
ľ	21/06/17	WS12	1005	0.1	0.7	19.3	0.0	0.00	0.00	Dry	
ļ		WS13								,	Unable to locate
ľ	21/06/17	WS14	1003	0.0	3.8	14.6	0.0	0.00	0.00	1.92	11 12 12 13 13 14
ľ	22/06/17	WS15	1005	0.0	0.8	20.0	0.0	0.00	0.00	1.22	
t	22/06/17	WS16	1003	0.2	3.7	15.1	0.0	0.00	0.00	Dry	
t	22/06/17	WS18	1019	0.0	0.7	19.4	0.0	0.00	0.00	Dry	
ŀ	22/06/17	WS20	1018	0.0	0.8	19.4	0.0	0.00	0.00	Dry	
ŀ	22/06/17	WS21	1018	0.0	0.1	20.2	0.0	0.00	0.00	Dry	
ŀ	22/06/17	WS22	1017	0.0	0.8	18.6	0.0	0.00	0.00	1.14	
ŀ	22/06/17	WS23	1017	0.0	0.5	20.0	0.0	0.00	0.00	Dry	
ŀ	22/06/17	WS24	1017	0.0	0.5	20.1	0.0	0.00	0.00	Dry	
ŀ	22/06/17	WS25	1018	0.0	0.8	19.4	0.0	0.00	0.00	Dry	
ŀ		WS26	1012	0.0	0.8	19.4	0.0	0.00	0.00		
ŀ	22/06/17 23/06/17	WS29	1012	0.0	0.8	20	0.0	0.00	0.00	Dry 1.90	
ŀ											
ŀ	23/06/17 23/06/17	WS30 WS35	1005 1012	0.0	1.2 3.3	19.4 17.3	0.0	0.00	0.00	1.76 0.84	
ŀ				0.0		20.1					
ŀ	23/06/17	WS36	1007		0.6		0.0	0.00	0.00	Dry	
ŀ	22/06/17	WS37	10017	0.0	0.7	19.9	0.0	0.00	0.00	2.33	
ŀ	22/06/17	WS38	1018	0.20	0.80	20.1	0.0	0.00	0.00	2.04	
ŀ	21/06/17	WS40C	1018	0.10	1.60	19.1	0.0	0.00	0.00	2.80	
ŀ	21/06/17	WS41	1018	0.10	4.30	13.4	0.0	0.00	0.00	2.45	
ŀ	22/06/17	WS43	1018	0.10	1.10	19.8	0.0	0.00	0.00	2.93	
ŀ	22/06/17	WS45	1013	0.00	1.60	19.2	0.0	0.11	0.00	2.50	
ŀ	22/06/17	WS49	1016	0.00	5.10	14.3	0.0	0.00	0.00	1.78	
ŀ	23/06/17	WS50	1017	0.00	1.20	14.3	0.0	0.00	0.00	2.38	
ŀ	23/06/17	WS51B	1017	0.00	0.80	17.1	0.0	0.00	0.10	2.12	
ŀ	23/06/17	WS52A	1010	0.00	0.80	19.2	0.0	0.00	0.00	2.68	
ŀ	23/06/17	WS53	1010	0.10	2.20	15.5	0.0	0.00	0.00	Dry	
ŀ	23/06/17	WS54	1002	0.00	3.10	10.1	0.0	0.00	0.00	Dry	
ŀ	22/06/17	WS56	1018	0.10	0.60	20.2	0.0	0.00	0.00	Dry	
1		WS57]							Unable to locate
nt	tract No.	RESULT	S OF GAS ANI	O WATI	ER LEVI	EL MONI	TORING	IN STANDPII	PES	STORY OF THE PROPERTY OF THE P	Fig. No.
	2304			Rive	erside B	alloch.				105	1

Appendix E Groundwater Results

Certificate Number 17-09386

08-Sep-17

Client Peter Brett Associates LLP

Exchange Place 3 Semple Street Edinburgh EH3 8BL

Our Reference 17-09386

Client Reference (not supplied)

Order No (not supplied)

Contract Title Balloch

Description 15 Water samples.

Date Received 04-Sep-17

Date Started 04-Sep-17

Date Completed 08-Sep-17

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager

Summary of Chemical Analysis Water Samples

Our Ref 17-09386 Client Ref Contract Title Balloch

Lab No	1225048	1225049	1225050	1225051	1225052	1225053
Sample ID	WS1	WS2A	WS3	WS08	WS22	WS29
Depth						
Other ID						
Sample Type	WATER	WATER	WATER	WATER	WATER	WATER
Sampling Date	30/05/17	30/05/17	30/05/17	30/05/17	31/05/17	30/05/17
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s

Test	Method	LOD	Units						
Metals									
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	0.42	0.56	0.42	0.60	0.22	0.21
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.03
Chromium, Dissolved	DETSC 2306	0.25	ug/l	< 0.25	< 0.25	0.47	< 0.25	< 0.25	< 0.25
Chromium, Hexavalent	DETSC 2203	7	ug/l						
Copper, Dissolved	DETSC 2306	0.4	ug/l	0.5	1.4	0.7	0.9	5.8	2.1
Lead, Dissolved	DETSC 2306	0.09	ug/l	< 0.09	< 0.09	< 0.09	< 0.09	0.14	< 0.09
Mercury, Dissolved	DETSC 2306	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Nickel, Dissolved	DETSC 2306	0.5	ug/l	0.8	3.0	0.9	1.4	9.5	12
Selenium, Dissolved	DETSC 2306	0.25	ug/l	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Zinc, Dissolved	DETSC 2306	1.3	ug/l	9.4	4.6	5.0	8.2	35	9.7
Inorganics									
рН	DETSC 2008			6.5	7.4	7.2	7.0	6.4	6.4
Hardness	DETSC 2303	0.1	mg/l	61.9	299	178	79.2	23.9	23.7
Petroleum Hydrocarbons									
EPH (C10-C12)	DETSC 3311	10	ug/l						
EPH (C12-C16)	DETSC 3311	10	ug/l						
EPH (C16-C21)	DETSC 3311	10	ug/l						
EPH (C21-C28)	DETSC 3311	10	ug/l						
EPH (C28-C35)	DETSC 3311	10	ug/l						
EPH (C35-C40)	DETSC 3311	10	ug/l						
EPH (C10-C40)	DETSC 3311	10	ug/l						
PAHs									
Naphthalene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01		
Acenaphthylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01		
Acenaphthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01		
Fluorene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01		
Phenanthrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	0.03		
Anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01		
Fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	0.06		
Pyrene	DETSC 3304	0.01	ug/l	0.06	0.03	0.07	0.28		
Benzo(a)anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01		
Chrysene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01		
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01		
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01		
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01		
Indeno(1,2,3-c,d)pyrene	DETSC 3304*	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01		
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01		
Benzo(g,h,i)perylene	DETSC 3304*	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01		
PAH Total	DETSC 3304	0.04	ug/l	0.06	< 0.04	0.07	0.38		

Summary of Chemical Analysis Water Samples

Our Ref 17-09386 Client Ref Contract Title Balloch

Lab No	1225054	1225055	1225056	1225057	1225058	1225059
Sample ID	WS37	WS38	WS40	WS41	WS43	WS45
Depth						
Other ID						
Sample Type	WATER	WATER	WATER	WATER	WATER	WATER
Sampling Date	30/05/17	31/05/17	31/05/17	31/05/17	01/06/17	01/06/17
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s

Test	Method	LOD	Units						
Metals									
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	0.39	0.37	1.6	1.1	4.5	0.61
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03	< 0.03	0.04	0.11	< 0.03	< 0.03
Chromium, Dissolved	DETSC 2306	0.25	ug/l	0.42	0.45	6.1	0.31	0.57	0.32
Chromium, Hexavalent	DETSC 2203	7	ug/l					< 7.0	< 7.0
Copper, Dissolved	DETSC 2306	0.4	ug/l	2.6	2.5	4.5	1.8	1.3	0.8
Lead, Dissolved	DETSC 2306	0.09	ug/l	0.23	0.42	4.8	1.9	32	4.0
Mercury, Dissolved	DETSC 2306	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Nickel, Dissolved	DETSC 2306	0.5	ug/l	2.9	6.1	6.1	11	8.9	7.6
Selenium, Dissolved	DETSC 2306	0.25	ug/l	0.75	< 0.25	0.78	< 0.25	< 0.25	< 0.25
Zinc, Dissolved	DETSC 2306	1.3	ug/l	17	37	32	230	62	20
Inorganics									
рН	DETSC 2008			6.8	6.8	6.7	6.4	7.0	6.9
Hardness	DETSC 2303	0.1	mg/l	185	112	136	124	172	183
Petroleum Hydrocarbons									
EPH (C10-C12)	DETSC 3311	10	ug/l	< 10		< 10		< 10	< 10
EPH (C12-C16)	DETSC 3311	10	ug/l	< 10		< 10		< 10	< 10
EPH (C16-C21)	DETSC 3311	10	ug/l	< 10		< 10		< 10	< 10
EPH (C21-C28)	DETSC 3311	10	ug/l	< 10		< 10		< 10	< 10
EPH (C28-C35)	DETSC 3311	10	ug/l	< 10		< 10		< 10	< 10
EPH (C35-C40)	DETSC 3311	10	ug/l	< 10		< 10		< 10	< 10
EPH (C10-C40)	DETSC 3311	10	ug/l	< 10		< 10		< 10	< 10
PAHs						T.			
Naphthalene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	0.01	0.02	< 0.01	< 0.01	< 0.01
Pyrene	DETSC 3304	0.01	ug/l	< 0.01	0.14	0.07	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-c,d)pyrene	DETSC 3304*	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(g,h,i)perylene	DETSC 3304*	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
PAH Total	DETSC 3304	0.04	ug/l	< 0.04	0.15	0.08	< 0.04	< 0.04	< 0.04

Summary of Chemical Analysis Water Samples

Our Ref 17-09386 Client Ref Contract Title Balloch

Lab No	1225060	1225061	1225062
Sample ID	WS49	WS51B	WS56
Depth			
Other ID			
Sample Type	WATER	WATER	WATER
Sampling Date	31/05/17	01/06/17	31/05/17
Sampling Time	n/s	n/s	n/s

		Janipi	ing rime	n/s	n/s	n/s
Test	Method	LOD	Units			
Metals						
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	0.83	1.8	1.3
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03	< 0.03	< 0.03
Chromium, Dissolved	DETSC 2306	0.25	ug/l	0.40	0.83	0.86
Chromium, Hexavalent	DETSC 2203	7	ug/l	< 7.0	< 7.0	
Copper, Dissolved	DETSC 2306	0.4	ug/l	2.8	0.6	1.5
Lead, Dissolved	DETSC 2306	0.09	ug/l	0.43	0.49	0.52
Mercury, Dissolved	DETSC 2306	0.01	ug/l	0.01	< 0.01	< 0.01
Nickel, Dissolved	DETSC 2306	0.5	ug/l	8.4	4.8	5.7
Selenium, Dissolved	DETSC 2306	0.25	ug/l	2.7	1.8	0.92
Zinc, Dissolved	DETSC 2306	1.3	ug/l	64	10	57
Inorganics	•				·	
pH	DETSC 2008			6.4	6.6	6.8
Hardness	DETSC 2303	0.1	mg/l	175	139	221
Petroleum Hydrocarbons	<u>'</u>		<u> </u>	·	<u>'</u>	
EPH (C10-C12)	DETSC 3311	10	ug/l	< 10	< 10	
EPH (C12-C16)	DETSC 3311	10	ug/l	< 10	34	
EPH (C16-C21)	DETSC 3311	10	ug/l	< 10	80	
EPH (C21-C28)	DETSC 3311	10	ug/l	< 10	32	
EPH (C28-C35)	DETSC 3311	10	ug/l	< 10	< 10	
EPH (C35-C40)	DETSC 3311	10	ug/l	< 10	< 10	
EPH (C10-C40)	DETSC 3311	10	ug/l	< 10	120	
PAHs	•				<u>'</u>	
Naphthalene	DETSC 3304	0.01	ug/l	< 0.01	0.14	0.02
Acenaphthylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01
Acenaphthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	0.06
Fluorene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01
Phenanthrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	0.04
Anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01
Fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	0.35
Pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	2.1
Benzo(a)anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01
Chrysene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-c,d)pyrene	DETSC 3304*	0.01	ug/l	< 0.01	< 0.01	< 0.01
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01
Benzo(g,h,i)perylene	DETSC 3304*	0.01	ug/l	< 0.01	< 0.01	0.16
PAH Total	DETSC 3304	0.04	ug/l	< 0.04	0.14	2.8

Our Ref 17-09386 Client Ref Contract Title Balloch

Lab No
Sample ID
WS37
Depth
Other ID
Sample Type
Sampling Date
Sampling Time

Our Ref 17-09386 Client Ref Contract Title Balloch

Lab No 1225056
Sample ID WS40
Depth
Other ID
Sample Type WATER
Sampling Date 31/05/2017
Sampling Time

Test Method LOD Units

Petroleum Hydrocarbons

Chromatogram: TPH 10-40 *

FIGUR. Basek Suprial ID: CATA A20... TPH LIQUIDS 0035EPTEMBERO/ISEPTEMBERO/I

Our Ref 17-09386 Client Ref Contract Title Balloch

Lab No
Sample ID
WS43
Depth
Other ID
Sample Type
Sampling Date
Sampling Time

Our Ref 17-09386 Client Ref Contract Title Balloch

Lab No
Sample ID
WS45
Depth
Other ID
Sample Type
Sampling Date
Sampling Time

Our Ref 17-09386 Client Ref Contract Title Balloch

Lab No
Sample ID
WS49
Depth
Other ID
Sample Type
Sampling Date
Sampling Time

Test Method LOD Units

Petroleum Hydrocarbons

Chromatogram: TPH 10-40 *

FOLS. Basis Signal (D:DATA 20. TPH LIDUIGS 095EPTEMBER 2017 2017 49-07 15-13-20 800000011.D)

A Signal D:DATA 20. TPH LIDUIGS 095EPTEMBER 2017 2017 49-07 15-13-20 800000011.D)

Light Signal D:DATA 20. TPH LIDUIGS 095EPTEMBER 2017 2017 49-07 15-13-20 800000011.D)

Light Signal D:DATA 20. TPH LIDUIGS 095EPTEMBER 2017 2017 49-07 15-13-20 800000011.D)

Light Signal D:DATA 20. TPH LIDUIGS 095EPTEMBER 2017 2017 49-07 15-13-20 800000011.D)

Light Signal D:DATA 20. TPH LIDUIGS 095EPTEMBER 2017 2017 49-07 15-13-20 80000011.D)

Light Signal D:DATA 20. TPH LIDUIGS 095EPTEMBER 2017 2017 49-07 15-13-20 80000011.D)

Light Signal D:DATA 20. TPH LIDUIGS 095EPTEMBER 2017 2017 49-07 15-13-20 80000011.D)

Light Signal D:DATA 20. TPH LIDUIGS 095EPTEMBER 2017 2017 49-07 15-13-20 80000011.D)

Light Signal D:DATA 20. TPH LIDUIGS 095EPTEMBER 2017 2017 49-07 15-13-20 80000011.D)

Light Signal D:DATA 20. TPH LIDUIGS 095EPTEMBER 2017 2017 49-07 15-13-20 80000011.D)

Light Signal D:DATA 20. TPH LIDUIGS 095EPTEMBER 2017 2017 49-07 15-13-20 80000011.D)

Light Signal D:DATA 20. TPH LIDUIGS 095EPTEMBER 2017 2017 49-07 15-13-20 80000011.D)

Light Signal D:DATA 20. TPH LIDUIGS 095EPTEMBER 2017 2017 49-07 15-13-20 80000011.D)

Light Signal D:DATA 20. TPH LIDUIGS 095EPTEMBER 2017 2017 49-07 15-13-20 80000011.D)

Light Signal D:DATA 20. TPH LIDUIGS 095EPTEMBER 2017 2017 49-07 15-13-20 80000011.D)

Light Signal D:DATA 20. TPH LIDUIGS 095EPTEMBER 2017 49-07 15-13-20 80000011.D)

Light Signal D:DATA 20. TPH LIDUIGS 095EPTEMBER 2017 49-07 15-13-20 80000011.D)

Light Signal D:DATA 20. TPH LIDUIGS 095EPTEMBER 2017 49-07 15-13-20 80000011.D)

Light Signal D:DATA 20. TPH LIDUIGS 095EPTEMBER 2017 49-07 15-13-20 80000011.D)

Light Signal D:DATA 20. TPH LIDUIGS 095EPTEMBER 2017 49-07 15-13-20 80000011.D)

Light Signal D:DATA 20. TPH LIDUIGS 095EPTEMBER 2017 49-07 15-13-20 80000011.D)

Light Signal D:DATA 20. TPH LIDUIGS 095EPTEMBER 2017 49-07 15-13-20 80000011.D)

Light Signal D:DATA 2

Our Ref 17-09386 Client Ref Contract Title Balloch

_	
Lab No	1225061
Sample ID	WS51B
Depth	
Other ID	
Sample Type	WATER
Sampling Date	06/01/2017
Sampling Time	

Test Method LOD Units

Petroleum Hydrocarbons

Chromatogram: TPH 10-40 *

Fol B. Bakk Bynni (DICATA20... TPH LOUDS) OSSEPTEMBER 2017 2017-0-8-07 16-13-20 80000012 (D)

10
10
10
10
11
11

Information in Support of the Analytical Results

Our Ref 17-09386

Client Ref

Contract Balloch

Containers Received & Deviating Samples

		Date	•		Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
1225048	WS1 WATER	30/05/17	GB 1L, GV, PB 1L	Hardness (7 days), pH/Cond/TDS (7 days), Metals (Soluble) ICPMS (30 days), Naphthalene (14 days), PAH MS (14 days)	
1225049	WS2A WATER	30/05/17	GB 1L, GV, PB 1L	Hardness (7 days), pH/Cond/TDS (7 days), Metals (Soluble) ICPMS (30 days), Naphthalene (14 days), PAH MS (14 days)	
1225050	WS3 WATER	30/05/17	GB 1L, GV	Hardness (7 days), pH/Cond/TDS (7 days), Metals (Soluble) ICPMS (30 days), Naphthalene (14 days), PAH MS (14 days)	
1225051	WS08 WATER	30/05/17	GB 1L, GV, PB 1L	Hardness (7 days), pH/Cond/TDS (7 days), Metals (Soluble) ICPMS (30 days), Naphthalene (14 days), PAH MS (14 days)	
1225052	WS22 WATER	31/05/17	GB 1L, GV, PB 1L	Hardness (7 days), pH/Cond/TDS (7 days), Metals (Soluble) ICPMS (30 days)	
1225053	WS29 WATER	30/05/17	GB 1L, GV, PB 1L	Hardness (7 days), pH/Cond/TDS (7 days), Metals (Soluble) ICPMS (30 days)	
1225054	WS37 WATER	30/05/17	GB 1L, GV, PB 1L	Chromium (14 days), Hardness (7 days), pH/Cond/TDS (7 days), Metals (Soluble) ICPMS (30 days), Naphthalene (14 days), PAH MS (14 days), EPH (14 days)	
1225055	WS38 WATER	31/05/17	GB 1L, GV, PB 1L	Hardness (7 days), pH/Cond/TDS (7 days), Metals (Soluble) ICPMS (30 days), Naphthalene (14 days), PAH MS (14 days)	
1225056	WS40 WATER	31/05/17	GB 1L, GV, PB 1L	Chromium (14 days), Hardness (7 days), pH/Cond/TDS (7 days), Metals (Soluble) ICPMS (30 days), Naphthalene (14 days), PAH MS (14 days), EPH (14 days)	
1225057	WS41 WATER	31/05/17	GB 1L, GV, PB 1L	Hardness (7 days), pH/Cond/TDS (7 days), Metals (Soluble) ICPMS (30 days), Naphthalene (14 days), PAH MS (14 days)	
1225058	WS43 WATER	01/06/17	GB 1L, GV, PB 1L	Chromium (14 days), Chromium, Hexavalent (4 days), Hardness (7 days), Kone (30 days), pH/Cond/TDS (7 days), Metals (Soluble) ICPMS (30 days), Naphthalene (14 days), PAH MS (14 days), EPH (14 days)	
1225059	WS45 WATER	01/06/17	GB 1L, GV, PB 1L	Chromium (14 days), Chromium, Hexavalent (4 days), Hardness (7 days), Kone (30 days), pH/Cond/TDS (7 days), Metals (Soluble) ICPMS (30 days), Naphthalene (14 days), PAH MS (14 days), EPH (14 days)	
1225060	WS49 WATER	31/05/17	GB 1L, GV, PB 1L	Chromium (14 days), Chromium, Hexavalent (4 days), Hardness (7 days), Kone (30 days), pH/Cond/TDS (7 days), Metals (Soluble) ICPMS (30 days), Naphthalene (14 days), PAH MS (14 days), EPH (14 days)	
1225061	WS51B WATER	01/06/17	GB 1L, GV, PB 1L	Chromium (14 days), Chromium, Hexavalent (4 days), Hardness (7 days), Kone (30 days), pH/Cond/TDS (7 days), Metals (Soluble) ICPMS (30 days), Naphthalene (14 days), PAH MS (14 days), EPH (14 days)	

Information in Support of the Analytical Results

Our Ref 17-09386

Client Ref

Contract Balloch

Contract	Dallocti				
1225062	WS56 WATER	31/05/17	GB 1L, GV, PB 1L	Hardness (7 days), pH/Cond/TDS (7 days), Metals	
				(Soluble) ICPMS (30 days), Naphthalene (14 days),	
				PAH MS (14 days)	

Key: G-Glass P-Plastic B-Bottle V-Vial

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Peter Brett Associates LLP is a leading development and infrastructure consultancy. As an independent consulting practice of planners, economists, property professionals, engineers and scientists, we provide trusted advice to create value from land and buildings owned or operated by our clients.

All of our work, from the engineering of landmark buildings and critical infrastructure to the spatial planning and economic evidence in support of development, is evidence based and informed by a deep understanding of what it takes to deliver construction. UK
Ashford
Birmingham
Bristol
Cambridge
Doncaster
Edinburgh
Glasgow
London
Manchester
Newcastle
Northampton
Oxford
Plymouth
Reading
Southampton
Taunton

International Czech Republic Germany

Services Transport Planning Energy and Buildings Civil Engineering Water, Environment and Geotechnical Planning, Development and Economics

www.peterbrett.com